Kullback-Leibler Divergence,即K-L散度,是一种量化两种概率分布P和Q之间差异的方式,又叫相对熵。在概率学和统计学上...
收录了50篇文章 · 525人关注
Kullback-Leibler Divergence,即K-L散度,是一种量化两种概率分布P和Q之间差异的方式,又叫相对熵。在概率学和统计学上...
命令状态下快捷键 编辑状态下快捷键
一、深度学习介绍 深度学习是以不少于两个隐含层的神经网络对输入进行非线性变换或表示学习的技术,通过构建深层神经网络,进行各项分析活动。深层神经网...
本博客内容来源于网络以及其他书籍,结合自己学习的心得进行重编辑,因为看了很多文章不便一一标注引用,如图片文字等侵权,请告知删除。 传统2D计算机...
本博客内容来源于网络以及其他书籍,结合自己学习的心得进行重编辑,因为看了很多文章不便一一标注引用,如图片文字等侵权,请告知删除。 传统2D计算机...
参考:https://baijiahao.baidu.com/s?id=1636737136973859154&wfr=spider&for=p...
什么是特征缩放 特征缩放是用来标准化数据特征的范围 机器学习为什么需要特征缩放 在处理多维特征问题的时候,需要保证特征具有相近的尺度,这有助于梯...
0. 前言 虽然网上教程一大把,但是作为小白,训练自己的数据集还是费了点事。记录下一些关键点,少踩一点坑。本文假设已经拥有以下条件: 1. 安装...
深度学习或者说神经网络中最让人头疼的问题也是最常见的问题,便是过拟合和欠拟合问题。过拟合体现在训练数据集中模型表现出很高的准确性,但是在测试集中...
前言 开始学习 Tensorflow,但是又不想投资一台专用的 GPU 工作站。现在使用的主力电脑是:Thinkpad X1 Carbon,计划...