HC(Histogram-based Contrast) 基于直方图对比度的显著性

HC(Histogram-based Contrast) 基于直方图对比度的显著性

来源于: 2011, Global contrast based salient region detection, ChengSaliencyCVPR2011.pdf (mmcheng.net)

详见作者主页: Global contrast based salient region detection – 程明明个人主页 (mmcheng.net)

显著性定义

图像中像素的显著性值可以它和图像中其它像素的对比度来定义, 具体公式为:
S(I_k) = S(c_l) = \sum_{j=1}^{n}{f_iD(c_l, c_j)}
其中, c_l 为像素 I_k 的颜色, n为图像中所有颜色的总数, f_jc_j 在图像I中出现的概率, D(c_l, c_j) 为颜色在Lab空间的距离.

使用上述公式就可以计算每个像素的显著性, 从而可以得到图像中目标的显著性.

但上述公式存在一个问题: 对于RGB颜色空间, 8bit数据的颜色总数为 255^3=16581375, 这样会使得公式计算量大.

具体实现

优化加速

为了解决计算量大的问题, 作者对颜色进行了量化来减少计算量, 如将颜色量化到12个不同的值(在RGB颜色空间量化), 这样颜色总数为 12^3=1728. 同时丢弃部分频率较小的颜色, 用相近的颜色代替(在Lab颜色空间计算距离).

最后, 对量化后的图像直方图进行操作, 避免对整幅图像进行处理, 从而提高效率.

颜色空间平滑

量化后虽然提高了效率, 但会带来负面影响, 因为相似的颜色会被量化为不同值, 这样相似的颜色会得到不同的显著性值. 为解决这个问题, 作者使用了颜色空间平滑, 对计算出来的显著性值进行平滑: 每个颜色的显著性值被替换为相似颜色的显著性值的加权平均, 具体公式为:
S^{'}(c)=\frac{1}{(m-1)T}\sum^{m}_{i=1}(T-D(c,c_i))S(c_i)
其中, T=\sum^{m}_{i=1}D(c,c_i) 为颜色 c 和它最相似的 m 个颜色的距离之和.

实现效果

处理过程及效果如下所示:

image

从上可以看到, 基本实现了文章中的效果, 但与文章给出的效果还是有些出入的.

关键参数

算法中主要有3个参数: 量化参数, 平滑参数, 保留颜色比例, 下面分别说明.

量化参数

量化参数: 将每个颜色通道进行量化, 从而减少颜色数量, 量化参数为Q, 则量化后颜色的总数为 Q^3+Q^2+Q+1, 对于量化参数, 有如下性质:

  • Q越大, 量化后颜色数量越多, 算法执行越慢;
  • Q越小, 量化后颜色数量越少, 算法执行越快;
  • Q越大, 得到的显著性图像层次越丰富(如下图所示中的树叶), 但如果Q太大, 如下图中Q>64时, 目标显著性与背景的显著性区别不大(如下图所示中的人与天空), 则不能突出目标;
  • Q越小, 得到的显著性图像越简单, 但如果Q太小, 如下图中Q<12时, 量化后颜色太少, 目标与背景颜色显著性区别不大, 不能突出目标;
  • 对下图中测试图像, Q的取值在[12,32]较合适;
image

图中, 第一行分别为原始图像, 颜色量化后图像, 显著性图像, 第二行为对应的颜色显著性.

平滑参数

平滑参数: 取值[0, 1], 为比例控制参数R, 控制用于颜色平滑的数量(保留的颜色数量*R), 用于消除颜色量化带来的负面影响(相似颜色量化成不同的值得到不同的显著性), 对于平滑控制参数, 有如下性质:

  • R越大, 目标和背景的颜色显著性越均匀, 目标和背景越容易区分, 但R>0.5时, 目标和背景的颜色显著性越来越接近, 显著性图像中, 目标与背景越难区分, 如下图中所示;
  • R越小, 颜色显著性越分散, 目标的显著性越分散(可能会被划分为多个目标);
  • 对于下图中测试图像, R<0.5比较合适;
image

图中, 第一行分别为原始图像, 颜色量化后图像, 显著性图像, 第二行为对应的颜色显著性.

保留颜色比例参数

保留颜色比例: 取值[0,1], 为保留颜色比例参数C, 用于控制保留下来的颜色数量(量化后实际出现的颜色数量*C), 用于消除颜色噪声带来的影响, 对于保留颜色比例参数, 有如下性质:

  • C越大, 保留颜色越多, 目标显著性越完整;
  • C越小, 保留颜色越少, 目标颜色保留的越少, 目标显著性越低;
  • 对于下图中测试图像, C=0.95比较合适;
image

图中, 第一行分别为原始图像, 颜色量化后图像, 显著性图像, 第二行为对应的颜色显著性.

核心原理说明

对于文章中的显著性, 根据定义及公式可知, 有2个核心要素:

  • 一是目标颜色出现的数量, 因而目标不能太大, 太大了就会成为背景, 如下图所示, 目标也不能太小, 否则就不是目标;
image
  • 二是目标颜色与其他颜色区别要大, 否则就不会被当成目标, 显著性则会很低, 如下图所示;
image
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容