基本理论
鉴于网上有很多好的文章理论部分我就不写了,放出下面的参考。可以先看理论。再看代码了解细节。
详细的理论可参考博文;
具体的sklearn使用方式和调参可参考博文
思维导图
Goodnotes
python 实现
import numpy as np
class Bayes(object):
def __init__(self, model = "multinomial",alpha = 1, log = False):
"""
:param model: "multinomial" : Naive Bayes classifier for multinomial models
"gaussian" :Naive Bayes classifier for gaussian model
"bernoulli" : Naive Bayes classifier for bernoulli model
:param alpha: smoothing
if alpha = 0 is no smoothing,
if 0 < alpha < 1 is Lidstone smoothing
if alpha = 1 is Laplace smoothing
:param log: is True
x1 * x2 * x3 to log(x1 * x2 * x3)
"""
self.model = model
self.alpha = alpha
self.log = log
def _probabilities_for_feature(self, feature):
if self.model == "multinomial" or "bernoulli":
feature_class_list = np.unique(feature)
total_mum = len(feature)
feature_value_prob = {}
for value in feature_class_list:
feature_value_prob[value] = (np.sum(np.equal(feature, value)) + self.alpha) / \
(total_mum + len(feature_class_list) * self.alpha)
feature_value_prob['error'] = self.alpha / (len(feature_class_list) * self.alpha)
return feature_value_prob
if self.model == "gaussian":
_meam = np.mean(feature)
_std = np.std(feature)
return (_meam, _std)
def fit(self, X, y, threshold = None):
X_ = X.copy()
self.feature_len = X_.shape[1]
self.threshold = threshold
if self.model == "bernoulli":
X_ = self._bernoulli_transform(X_)
self.classes_list = np.unique(y)
total_mum = len(y)
self.classes_prior = {}
# P(y = Ck )
for value in self.classes_list:
self.classes_prior[value] = (np.sum(np.equal(y, value)) + self.alpha) / (total_mum + len(self.classes_list) * self.alpha)
# P( xj | y= Ck )
self.conditional_prob = {}
for c in self.classes_list:
self.conditional_prob[c] = {}
# Traversal features
for i in range(len(X_[0])):
feature_value = self._probabilities_for_feature(X_[np.equal(y, c)][:, i])
self.conditional_prob[c][i] = feature_value
return self
def _get_xj_prob(self, values_probs,target_value):
if self.model == "multinomial" or "bernoulli":
if target_value not in values_probs.keys():
return values_probs['error']
else:
return values_probs[target_value]
elif self.model == "gaussian":
target_prob = (1 / np.sqrt(2 * np.pi * np.square(values_probs[1]))) * \
np.exp(-np.square(target_value - values_probs[0]) / (2*np.square(values_probs[1])))
return target_prob
def _bernoulli_transform(self, X):
assert len(X[0]) == len(self.threshold)
for index in range(len(X[0])):
X[:, index] = np.where(X[:, index] >= self.threshold[index], 1, 0)
return X
def predict(self, X):
X_ = X.copy()
if self.model == "bernoulli":
X_ = self._bernoulli_transform(X_)
assert len(X_.shape) == self.feature_len
result = np.zeros([len(X_)])
for r in range(len(X_)):
result_list = []
for index in range(len(self.classes_list)):
c_prior = self.classes_prior[self.classes_list[index]]
if self.log == False:
current_conditional_prob = 1.0
for i in range(len(X_[0])):
current_conditional_prob *= self._get_xj_prob(self.conditional_prob[self.classes_list[index]][i], X_[r,i])
current_conditional_prob *= c_prior
result_list.append(current_conditional_prob)
else:
current_conditional_prob = 0
for i in range(len(X[0])):
current_conditional_prob += np.log(self._get_xj_prob(self.conditional_prob[self.classes_list[index]][i], X[r,i]))
current_conditional_prob += np.log(c_prior)
result_list.append(current_conditional_prob)
result[r] = self.classes_list[np.argmax(np.array(result_list))]
return result