拉普拉斯变换与z变换

LTI系统对复指数信号对响应

傅里叶分析的重要价值在于:
1)相当广泛的信号都能用复指数信号的线性组合来表示;
2)LTI系统对复指数的响应同样是一个复指数。
傅里叶级数与傅里叶变换可以说明第一点,现证明第2点:
对任一输入连续信号x(t) = e^{st},LTI系统的输出为:
y(t) = \int_{-\infty}^{+\infty}h(\tau)x(t-\tau)d\tau=\int_{-\infty}^{+\infty}h(\tau)e^{s(t-\tau)}d\tau=e^{st}\int_{-\infty}^{+\infty}h(\tau)e^{-s\tau}d\tau
{\boxed{y(t) = H(s)e^{st}\\ H(s) = \int_{-\infty}^{+\infty}h(\tau)e^{-s\tau}d\tau}}
同样可证,对于任一输入离散信号x[n] = z^n
{\boxed{y[n] = H(z)z^n\\ H(z) = \sum_{k=-\infty}^{+\infty}h[k]z^{-k}}}

回顾傅里叶变换

连续时间傅里叶变换
{\boxed{x(t) = \frac 1{2\pi} \int_{-\infty}^{+\infty}X(jw)e^{jwt}dw\\ X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt}}
离散时间傅里叶变换
{\boxed{x[n] = \frac 1{2\pi} \int_{2\pi}X(e^{jw})e^{jwn}dw\\ X(e^{jw}) = \sum_{n=\infty}x[n]e^{-jwn}}}

拉普拉斯变换

连续时间傅里叶变换提供了将信号表示为形如e^{st}, s=jw的线性组合,然而LTI系统对复指数信号的响应不局限于纯虚数的情况,这就导致了连续时间傅里叶变换的推广,称为拉普拉斯变换。
回顾H(s) = \int_{-\infty}^{+\infty}h(\tau)e^{-s\tau}d\tau
s=jw, X(jw) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt,即傅里叶变换;
当s为一般复变量时,X(s) = \int_{-\infty}^{+\infty}x(t)e^{-st}dt,即拉普拉斯变换。

  • 例:求信号x(t) = e^{-at}u(t)的拉普拉斯变换
    前面已知,该信号的傅里叶变换为X(jw) = \frac 1{jw+a},a>0
    其拉普拉斯变换为:X(s) = \int_0^{\infty}e^{-(s+a)t}dt=\frac 1{s+a}=\frac 1{\sigma+a+jw}, Re(s)>-a
    在求拉普拉斯变换时,需要给出变换的代数表示式以及ROC(收敛域)。
    {\boxed{x(t) = \frac 1{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty}X(s)e^{st}ds\\ X(s) = \int_{-\infty}^{+\infty} x(t)e^{-st}dt}}

z变换

上述讨论了连续时间傅里叶变换的推广称为拉普拉斯变换,而离散时间傅里叶变换的推广称为z变换。
{\boxed{x[n] = \frac 1{2\pi j}\oint X(z)z^{n-1}dz\\ X(z) = \sum_{n=-\infty}^{+\infty}x[n]z^{-n}}}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容