scikit-learn 朴素贝叶斯分类器

在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是:
GaussianNB 先验为高斯分布的朴素贝叶斯
MultinomialNB 先验为多项式分布的朴素贝叶斯
BernoulliNB 先验为伯努利分布的朴素贝叶斯

一般来说,如果样本特征的分布大部分是连续值,使用GaussianNB会比较好。如果如果样本特征的分大部分是多元离散值,使用MultinomialNB比较合适。而如果样本特征是二元离散值或者很稀疏的多元离散值,应该使用BernoulliNB。

GaussianNB

GaussianNB假设特征的先验概率为正态分布,即如下式:
P(X_j=x_j|Y=C_k)=\frac{1}{\sqrt{2\pi\sigma_k^2}}e^{-\frac{(x_j-\mu_k)^2}{2\sigma_k^2}}
其中C_k为Y的第k类类别。
\mu_k为在样本类别C_k中,所有X_j的平均值。\sigma_k^2为在样本类别C_k中,所有X_j的方差。
GaussianNB类的主要参数仅有一个,即先验概率priors ,对应Y的各个类别的先验概率P(Y=C_k)。这个值默认不给出,如果不给出此时P(Y=C_k)=\frac{m_k}{m}。其中m为训练集样本总数量,m_k为输出为第k类别的训练集样本数。
在使用GaussianNB的fit方法拟合数据后,我们可以进行预测。此时预测有三种方法:
predict方法就是我们最常用的预测方法,直接给出测试集的预测类别输出。
predict_proba会给出测试集样本在各个类别上预测的概率。
predict_log_proba会给出测试集样本在各个类别上预测的概率的一个对数转化。

MultinomialNB

MultinomialNB假设特征的先验概率为多项式分布,即如下式:
P(X_j=x_{jl}|Y=C_k)=\frac{x_{jl}+\lambda}{m_k+n\lambda}
其中,P(X_j=x_{jl}|Y=C_k)是第k个类别的第j维特征的第l个个取值条件概率。m_k是训练集中输出为第k类的样本个数。
\lambda为一个大于0的常数,常常取为1,即拉普拉斯平滑。也可以取其他值。
MultinomialNB参数有3个。
参数alpha即为上面的常数\lambda,默认为1。
布尔参数fit_prior表示是否要考虑先验概率,如果是false,则所有的样本类别输出都有相同的类别先验概率。否则可以自己用第三个参数class_prior输入先验概率,或者不输入第三个参数class_prior让MultinomialNB自己从训练集样本来计算先验概率,此时的先验概率为P(Y=C_k)=\frac{m_k}{m}。其中m为训练集样本总数量,m_k为输出为第k类别的训练集样本数。

fit_prior class_prior 最终先验概率
false 填或者不填没有意义 P(Y=C_k)=1/k
true 不填 P(Y=Ck)=m_k/m
true P(Y=C_k)=class_prior

BernoulliNB

BernoulliNB假设特征的先验概率为二元伯努利分布(伯努利分布,又名两点分布或者0-1分布,是一个离散型概率分布),即如下式:
P(X_j=x_{jl}|Y=C_k)=P(j|Y=C_k)x_{jl}+[1−P(j|Y=C_k)](1−x_{jl})
此时l只有两种取值。x_{jl}只能取值0或者1。
BernoulliNB一共有4个参数,其中3个参数的名字和意义和MultinomialNB完全相同。唯一增加的一个参数是binarize,这个参数主要是用来帮BernoulliNB处理二项分布的,小于binarize的会归为一类,大于binarize的会归为另外一类。如果不输入,则BernoulliNB认为每个数据特征都已经是二元的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352

推荐阅读更多精彩内容