音频数字化简单原理

一、模拟信号和数字信号

模拟信号是指信号随时间的变化是连续的,即任意时间点总有一个瞬态的信号量与之对应,所以我们也将模拟信号称为连续信号。那么模拟信号为什么叫模拟信号呢?模拟信号传输过程中就是利用传感器把各种自然界各种连续的信号转换为几乎一模一样的电信号。比如说话声音,原本是声带的震动,经过麦克风的采集,将声波信号转换为电信号,此时的电信号波形是和原来的声波波形一样的。只是换了种物理量来表示和传递。因此,模拟信号就是用电信号来直接模拟了自然界各种物理量。

而与之对应的数字信号则是不连续的离散的,是对模拟信号进行采样得到。数字信号是模拟信号的近似,即然是近似就不可能完全一模一样。所以相对于自然界的信号,数字信号只能做到无限的接近。既然我们自然界所有的物理量都是模拟信号,为啥还需要数字信号呢?因为数字信号更便于计算机做直接各种数字处理、计算和存储,所以任何信号转换成了数字量后,就可以充分利用计算机来做各种计算和处理。

二、数字音频化

我们把声音模拟信号转换成数字信号的过程称为音频数字化(A/D 转换,模数转换)。目前最常见的方案是 PCM(脉冲编码调制 Pulse Codde Modulation),其主要过程是:采样 -> 量化 -> 编码

1、采样

把时间连续的信号转换为一连串时间不连续的脉冲信号,这个过程称为采样。也就是每隔一段时间采集一次模拟信号的样本。采样后的脉冲信号称为采样信号,采样信号在时间轴上是离散的。每秒采集的样本数量,称为采样率,比如采样率 44.1kHz 表示 1 秒钟采集 44100 个样本。采样率越高,还原的声音也就越真实。由于人耳的听觉范围是 20Hz~20kHz,根据香农采样定理(若信号的最高频率为 fmax,只要采样频率 f >= 2fmax,采样信号就能唯一复现原信号),理论上来说要把采集的声音信号唯一地还原成原来的声音,声音采样率需要高于声音信号最高频率的 2 倍,需要至少每秒进行 40000 次采样(40kHz 采样率)。这就是为什么常见的 CD 采样率为 44.1kHz,电话、无线对讲机和无线麦克风等的采样率是 8kHz。

2、量化

采样信号量化为数字信号的过程,称为量化。就是将每一个采样点的样本值数字化。

2.1、位深度

位深度(也叫采样精度,采样大小,Bit Depth)表示使用多少个二进制位来存储一个采样点的样本值。位深度越高,表示的振幅越精确。若要尽可能精确的还原声音,只有高采样率是不够的。描述一个采样点,横轴(时间)代表采样率,纵轴(幅度)代表位深度。16bit 表示用 16 位(2 个字节)来表示对该采样点的振幅进行编码时所能达到的精确程度,就是把纵轴分成 16 份描述振幅大小。 常见的常见的 CD 采用 16bit 的位深度,能表示 65535(2^16)个不同值。DVD 使用 24bit 的位深度,大部分电话设备使用 8bit 位深度。

3、编码

将采样和量化后的数字数据转成二进制码流。


如果想要播放声音,需进行 D/A 转换(数模转换),把数字信号转再换成模拟信号。

三、其他概念

1、有损和无损:

根据采样率和位深度得知,任何数字音频编码方案都是有损的,无法达到完全还原。目前能够达到最高保真水平的就是 PCM(脉冲编码调制 Pulse Codde Modulation)编码,因此 PCM 约定俗称 无损音频编码,PCM 编码数据可以理解为是未经过压缩的原始音频数据。目前广泛用于素材保存和音乐欣赏,CD、DVD 以及 .WAV 文件中均有应用。

2、比特率:

比特率(Bit Rate),又称码率,指单位时间内传输或处理的比特数量,单位是:比特每秒(bit/s 或者 bps),描述了 1 秒钟的该音频的信息量。在无损无压缩格式中,比特率 = 采样率 x 位深度 x 声道数(在有损压缩中这个公式是不成立的,因为原始信息以及被破坏)。例如采样率 44.1kHz 位深度 16bit 的立体声 PCM 编码数据的比特率为:

44100 * 16 * 2 = 1411.2Kbps

3、声道:

单声道产生一组声波数据,立体声产生两组声波数据。声音文件总大小 = 采样率 x 位深度 x 声道数 x 总时长 = 比特率 x 总时长。例如:采样率 44.1kHz 位深度 16bit 的 1 分钟时长的立体声 PCM 编码数据的大小为:

44100 * 16 * 2 * 60 / 8 ≈ 10.34MB

4、信噪比:

信噪比是指信号与噪声的比例,用于比较所需信号的强度与背景噪声的强度,以分贝(dB)为单位。位深度限制了信噪比的最大值,关系如下图:

image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,743评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,296评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,285评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,485评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,581评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,821评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,960评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,719评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,186评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,516评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,650评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,329评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,936评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,757评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,991评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,370评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,527评论 2 349

推荐阅读更多精彩内容