14 聚类算法 - 代码案例六- 谱聚类(SC)算法案例

13 聚类算法 - 谱聚类

需求 使用scikit的相关API创建模拟数据,然后使用谱聚类算法进行数据聚类操作,并比较算法在不同参数情况下的聚类效果。

相关API:https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html

常规操作:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import sklearn.datasets as ds
import matplotlib.colors
import warnings
from sklearn.cluster import SpectralClustering#引入谱聚类
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import euclidean_distances

## 设置属性防止中文乱码及拦截异常信息
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

warnings.filterwarnings('ignore', category=FutureWarning)
1、创建模拟数据
N = 1000
centers = [[1, 2], [-1, -1], [1, -1], [-1, 1]]
#符合高斯分布的数据集
data1, y1 = ds.make_blobs(N, n_features=2, centers=centers, 
    cluster_std=(0.75,0.5,0.3,0.25), random_state=0)
data1 = StandardScaler().fit_transform(data1)
dist1 = euclidean_distances(data1, squared=True)
2、 数据2 - 圆形数据集
t = np.arange(0, 2 * np.pi, 0.1)
data2_1 = np.vstack((np.cos(t), np.sin(t))).T
data2_2 = np.vstack((2*np.cos(t), 2*np.sin(t))).T
data2_3 = np.vstack((3*np.cos(t), 3*np.sin(t))).T
data2 = np.vstack((data2_1, data2_2, data2_3))
y2 = np.vstack(([0] * len(data2_1), [1] * len(data2_2), [2] * len(data2_3)))

datasets = [(data1, y1), (data2, y2.ravel())]

def expandBorder(a, b):
    d = (b - a) * 0.1
    return a-d, b+d

3、画图
colors = ['r', 'g', 'b', 'y']
cm = mpl.colors.ListedColormap(colors)

for i,(X, y) in enumerate(datasets):
    x1_min, x2_min = np.min(X, axis=0)
    x1_max, x2_max = np.max(X, axis=0)
    x1_min, x1_max = expandBorder(x1_min, x1_max)
    x2_min, x2_max = expandBorder(x2_min, x2_max)
    n_clusters = len(np.unique(y))
    plt.figure(figsize=(12, 8), facecolor='w')
    plt.suptitle(u'谱聚类--数据%d' % (i+1), fontsize=20)
    plt.subplots_adjust(top=0.9,hspace=0.35)

    #谱聚类的建模
    gamma_list = [0.1,5,10]
    nclusters = [4,3]
    for i, ncluster in enumerate(nclusters):
        for j,gamma_value in enumerate(gamma_list):
            spectral = SpectralClustering(n_clusters=ncluster,
                gamma = gamma_value, affinity='laplacian',assign_labels='kmeans')
            y_hat = spectral.fit_predict(X)
            unique_y_hat = np.unique(y_hat)


            ## 开始画图
            plt.subplot(2,3,j+1)
            for k, col in zip(unique_y_hat, colors):
                cur = (y_hat == k)
                plt.scatter(X[cur, 0], X[cur, 1], s=40, c=col, edgecolors='k')
            plt.xlim((x1_min, x1_max))
            plt.ylim((x2_min, x2_max))
            plt.grid(True)
            plt.title('$\gamma$ = %.2f ,聚类簇数目:%d' % (gamma_value, n_clusters), 
                fontsize=16)

    plt.subplot(234)
    plt.scatter(X[:, 0], X[:,1], c=y, s=30, cmap=cm, edgecolors='none')
    plt.xlim((x1_min, x1_max))
    plt.ylim((x2_min, x2_max))
    plt.title('原始数据,聚类簇数目:%d' % len(np.unique(y)))
    plt.grid(True)
    plt.show()  
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,744评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,505评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,105评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,242评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,269评论 6 389
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,215评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,096评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,939评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,354评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,573评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,745评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,448评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,048评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,683评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,838评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,776评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,652评论 2 354

推荐阅读更多精彩内容