高等数学吧 - 积分竞赛 - Season 1 - 4

同样是先给出链接:Season 1
因为供题者和解题人都可以在链接里找到,所以这里就不再赘述


31

\displaystyle\int_0^{\infty}\dfrac{1-\cos x}{x(e^x-1)}\text{d}x

解答:

\begin{aligned} I=&\int_0^{\infty}\dfrac{1-\cos x}{x(e^x-1)}\text{d}x\\ I(a)=&\int_0^{\infty}\dfrac{1-\cos ax}{x(e^x-1)}\text{d}x\\ I'(a)&=\int_0^{\infty}\dfrac{\sin ax}{e^x-1}\text{d}x\\ =&\int_0^{\infty}\sin ax\cdot\sum_{n=1}^{\infty}e^{-nx}\text{d}x\\ =&\sum_{n=1}^{\infty}\int_0^{\infty}\sin ax\cdot e^{-nx}\text{d}x\\ =&\sum_{n=1}^{\infty}\dfrac{a}{n^2+a^2} \end{aligned}
\begin{aligned} I=&I(1)=\int_0^{1}\sum_{n=1}^{\infty}\dfrac{a}{n^2+a^2}\\ =&\dfrac12\sum_{n=1}^{\infty}\ln\left(1+\dfrac1{n^2}\right)\\ =&\dfrac12\ln\left(\dfrac{\sinh x}{x}\right) \end{aligned}

\displaystyle\dfrac{\sinh x}{x}=\prod_{k=1}^{\infty}\left(1+\dfrac{x^2}{k^2\pi^2}\right)


32

\displaystyle\int_0^{\pi}\dfrac{x}{\left(\sin x+\sqrt{2}\right)^2}\text{d}x=\dfrac{(\pi-2)\pi}{2\sqrt{2}}

解答:

\begin{aligned} I=&\int_0^{\pi}\dfrac{x}{\left(\sin x+\sqrt{2}\right)^2}\text{d}x\\ =&\dfrac\pi2\int_0^{\pi}\dfrac{\text{d}x}{(\sin x+\sqrt{2})^2}\\ =&\pi\int_0^{\infty}\dfrac{t^2+1}{\left[2t+\sqrt2(t^2+1)\right]^2}\text{d}t\\ =&\dfrac{\pi(\pi-2)}{2\sqrt{2}} \end{aligned}


33

\displaystyle\int_{-\infty}^{+\infty}\dfrac{\text{d}x}{(x^2+x+1)^{50}}

解答:

\begin{aligned} I=&\int_{-\infty}^{+\infty}\dfrac{\text{d}x}{(x^2+x+1)^{50}}\\ =&\int_{-\infty}^{+\infty}\dfrac{\text{d}x}{\left[(x+\frac12)^2+\frac34\right]}\\ =&\int_{-\frac\pi2}^{\frac\pi2}\dfrac{\frac{\sqrt3}{2}\sec^2u}{(\frac34)^{50}\sec^{100}u}\text{d}u\\ =&2\cdot\dfrac{\sqrt{3}}{2}\cdot(\frac43)^{50}\int_{0}^{\frac\pi2}\cos^{98}u\text{d}u\\ =&\sqrt{3}(\frac43)^{50}\dfrac{97!!}{98!!}\cdot\dfrac{\pi}{2} \end{aligned}


34

\displaystyle\int\dfrac{\sin^2x}{\sin^3x+\cos^3x}\text{d}x

解答1:

\begin{aligned} I=&\int\dfrac{\sin^2x}{\sin^3x+\cos^3x}\text{d}x\\ =&\int\dfrac{\sin^2x}{(\sin +\cos x)(\sin^2x\sin \cos x+\cos^2x)}\\ =&\int\left[\dfrac{\sin^2x}{3(\sin x+\cos x)\sin x\cos x}-\dfrac{\sin^2x}{3(1-\sin x\cos x)\sin x\cos x}\right]\text{d}x\\ =&\dfrac13\int\dfrac{\sin x}{(\sin x+\cos x)\cos x}\text{d}x-\dfrac13\int\dfrac{\sin^2x}{1-\sin x\cos x}\text{d}x-\dfrac13\int\dfrac{\sin^2x}{\sin x\cos x}\text{d}x\\ =&\dfrac13\int\dfrac{1}{\cos x}\text{d}x-\dfrac13\int\dfrac{1}{\sin x+\cos x}\text{d}x-\dfrac13\int\dfrac{\sin x}{\cos x}\text{d}x-\dfrac16\int\dfrac{1-\cos2x}{1-\frac12\sin2x}\text{d}x\\ =&\dfrac13\ln\left|\dfrac{1+\tan\frac x2}{1-\tan\frac x2}\right|-\dfrac{1}{3\sqrt2}\ln\left|\dfrac{\sqrt{2}-1+\tan\frac x2}{\sqrt{2}+1\tan \frac x2}\right|\\ &+\frac13\ln|\cos x|-\frac16\int\dfrac{1}{1-\frac12\sin2x}\text{d}x+\frac16\int\dfrac{\cos2x}{1-\frac12\sin2x}\text{d}x\\ =&\dfrac13\ln\left|\dfrac{1+\tan\frac x2}{1-\tan\frac x2}\right|-\dfrac{1}{3\sqrt2}\ln\left|\dfrac{\sqrt{2}-1+\tan\frac x2}{\sqrt{2}+1\tan \frac x2}\right|+\frac13\ln|\cos x|\\ &-\dfrac{1}{12\sqrt3}\arctan\dfrac{2\tan x-1}{\sqrt3}-\dfrac16\ln\left|1-\frac12\sin2x\right|+C \end{aligned}


35

\displaystyle\int\dfrac{1}{\sin^3x+\cos^3x}\text{d}x

解答:

\begin{aligned} &I=\int\dfrac{\sin^2x}{\sin^3x+\cos^3x}\text{d}x,\;J=\int\dfrac{\cos^2x}{\sin^3x+\cos^3x}\text{d}x\\ &I+J=\int\dfrac{1}{\sin^3x+\cos^3x}\text{d}x\\ &I-J=\int\dfrac{(\sin x+\cos x)(\sin x-\cos x)}{(\sin x+\cos x)(1-\sin x\cos x)}\text{d}x\\ &=-\int\dfrac{\text{d}(\sin x+\cos x)}{\frac32-\frac12(\sin x+\cos x)^2}\qquad t=\sin x+\cos x\\ &=\dfrac{-2}{2\sqrt{3}}\int\dfrac{(\sqrt3-t)+(\sqrt3+t)}{3-t^2}\text{d}t\\ &=-\dfrac{\sqrt3}{3}\ln\left|\dfrac{\sqrt{3}+\sin x+\cos x}{\sqrt3-\sin x-\cos x}\right|+C \end{aligned}

\begin{aligned} I=&\int\dfrac{1}{\sin^3x+\cos^3x}\text{d}x\\ =&\dfrac13\int\dfrac{(\sin x+\cos x)^2+2(1-\sin x\cos x)}{(\sin x+\cos x)(1-\sin x\cos x)}\text{d}x\\ =&\dfrac13\int\dfrac{(\sin x+\cos x)\text{d}x}{\frac12+\frac12(\sin x-\cos x)^2}+\frac23\int\dfrac{\text{d}x}{\sin x+\cos x}\\ =&\frac13\dfrac{\text{d}(\sin x-\cos x)}{\frac12+\frac12(\sin x-\cos x)^2}+\frac23\cdot\frac{\sqrt2}{2}\int\dfrac{\text{d}(x-\frac\pi4)}{\cos(x-\frac\pi4)}\\ =&\frac23\arctan(\sin x-\cos x)+\dfrac{\sqrt2}{3}\ln\left|\sec(x-\frac\pi4)+\tan(x-\frac\pi4)\right|+C \end{aligned}


36

\displaystyle\int_{-\infty}^{+\infty}\dfrac{\arctan\dfrac{-x}{1+2x^2}}{x}\text{d}x=-\pi\ln2

解答1:

\begin{aligned} &\int_{-\infty}^{+\infty}\dfrac{\arctan\dfrac{-x}{1+2x^2}}{x}\text{d}x\\ =&2\int_0^{\infty}\dfrac{\arctan\dfrac{-x}{1+2x^2}}{x}\text{d}x\\ =&-2\int_0^{\infty}\ln x\left(\dfrac1{1+x^2}-\dfrac{2}{4x^2+1}\right)\\ =&4\int_0^{\infty}\dfrac{\ln x}{1+4x^2}\text{d}x\\ =&-4\ln2\int_0^{\infty}\dfrac{1}{1+4x^2}\text{d}x\\ =&-4\ln2\cdot\dfrac{\pi}4\\ =&-\pi\ln2 \end{aligned}

解答2:

\begin{aligned} I=&\int_{-\infty}^{+\infty}\dfrac{\arctan\dfrac{-x}{1+2x^2}}{x}\text{d}x\\ =&2\int_0^{+\infty}\dfrac{\arctan x-\arctan 2x}{x}\text{d}x\\ I(a)=&\int_0^{\infty}\dfrac{\arctan ax}{x}\text{d}x\\ I'(a)=&\int_0^{\infty}\dfrac{\text{d}(ax)}{1+a^2x^2}\cdot\dfrac1a\\ =&\dfrac1a\cdot\arctan ax\bigg|_0^{\infty}\\ =&\frac\pi2\dfrac1a\\ I=&2I(1)-2I(22)\\ =&2\int_2^1I'(a)\text{d}a\\ =&2\int_2^1\dfrac\pi2\cdot\dfrac1a\text{d}a\\ =&-\pi\ln2 \end{aligned}

解答3:

\begin{aligned} I=&\int_{-\infty}^{+\infty}\dfrac{\arctan\dfrac{-x}{1+2x^2}}{x}\text{d}x\\ =-2&\int_0^{+\infty}\dfrac{\text{d}x}{x}\int_x^{2x}\dfrac{\text{d}y}{1+y^2}\\ =&-2\int_0^{+\infty}\dfrac{\text{d}y}{1+y^2}\int_{\frac12y}^{y}\dfrac{\text{d}x}{x}\\ =&-2\ln2\int_0^{+\infty}\dfrac{\text{d}y}{1+y^2}\\ =&-\pi\ln2 \end{aligned}


37

\displaystyle\int_0^{\infty}\ln^2x\dfrac{1+x^2}{1+x^4}\text{d}x=\dfrac{3\pi^3}{16\sqrt{2}}

解答:

\begin{aligned} I(p)=&\int_0^{\infty}\dfrac{x^{p-1}}{1+x}\text{d}x\qquad x=\tan^2t\\ =&2\int_0^{\frac\pi2}\sin^{2p-1}t\cos^{1-2p}t\text{d}t\\ =&\Gamma(p)\Gamma(1-p)=\dfrac{\pi}{\sin p\pi}\\ I(a)=&\int_0^{\infty}\dfrac{1+x^2}{1+x^4}x^{a}\text{d}x\\ =&I(p_1)+I(p_2)\\ &p_1=\dfrac{a+1}{4}\quad p_2=\dfrac{a+3}{4}\\ &\int_0^{\infty}\ln^2x\dfrac{1+x^2}{1+x^4}\text{d}x\\ =&I''(a)\bigg|_{a=0}\\ =&\dfrac{3\pi^3}{16\sqrt{2}} \end{aligned}


38

\displaystyle\int_0^{\infty}\dfrac{\tan x}{x}\text{d}x=\dfrac{\pi}{2}

这也先坑着吧,主值积分是啥我也不清楚


39

\displaystyle\int_0^{\infty}\dfrac{\sin x}{\cosh x-\cos x}\dfrac{x^k}{k!}\text{d}x

解答:

\begin{aligned} &注意到\\ &\dfrac{\sin x}{\cosh x-\cos x}=2\sum_{n=1}^{\infty}e^{nx}\sin nx\\ &\int_0^{\infty}x^{m-1}e^{-ax}\sin bx\text{d}x\\ &=\dfrac{(m-1)!}{(a^2+b^2)^{\frac m2}}\sin\left(m\arctan \dfrac {b}{a}\right)\\ &\int_0^{\infty}\dfrac{\sin x}{\cosh x-\cos x}\dfrac{x^k}{k!}\text{d}x\\ =&2\int_0^{\infty}\dfrac{x^k}{k!}\sum_{n=1}^{\infty}e^{-nx}\sin nx\text{d}x\\ =&2\sum_{n=1}^{\infty}\dfrac{\sin\dfrac{k+1}{4}\pi}{(2n^2)^{\frac{k+1}2}}\\ =&\sum_{n=1}^{\infty}\dfrac{\sin\dfrac{k+1}{4}\pi}{(\sqrt{2})^{k-1}n^{k+1}}\\ =&\dfrac{\zeta(k+1)\sin\dfrac{k+1}{4}\pi}{(\sqrt{2})^{k-1}} \end{aligned}

上面那个注意到并不是那么简单注意到的,见一下:

\begin{aligned} &\sum_{n=1}^{\infty}e^{-nt}\sin nx=\frac12\dfrac{\sin x}{\cosh t-\cos x}\\ &1+2\sum_{n=1}^{\infty}e^{-nt}\cos nx=\dfrac{\sinh t}{\cosh t-\cos x}\\ &注意到\\ &\dfrac{p\sin x}{1-2p\cos x+p^2}=\sum_{k=1}^{\infty}p^k\sin kx\quad |p|<1\\ &令\;p=e^{-t},其中n=1,2,3,\cdots,t>0\\ &于是有: \\ &\dfrac{e^{-t}\sin x}{1-2e^{-t}\cos x+e^{-2t}}=\sum_{k=1}^{\infty}e^{-kt}\sin kx\\ &化简得:\\ &\sum_{n=1}^{\infty}e^{-nt}\sin nx=\frac12\dfrac{\sin x}{\cosh t-\cos x}\quad ,t>0\\ &同样有:\\ &\dfrac{1-p\cos x}{1-2p\cos x+p^2}=\sum_{k=1}^{\infty}p^k\cos kx\\ &\dfrac{1-p^2}{1-2p\cos x+p^2}=1+2\sum_{k=1}^{\infty}p^k\cos kx\\ &同样可得: \\ &\dfrac12\dfrac{e^t-\cos x}{\cosh t-\cos x}=\sum_{k=1}^{\infty}e^{-kt}\cos kx\qquad t>0\\ &\dfrac{\sinh t}{\cosh t-\cos x}=1+2\sum_{k=1}^{\infty}p^k\cos kx\qquad t>0 \end{aligned}

这边的注意到可参见我的复变函数习题:


40

\displaystyle\int_0^{\infty}\dfrac{\text{d}x}{\left[x^4+(1+2\sqrt{2})x^2+1\right]\left[x^{100}-x^{98}+\cdots+1\right]}=\dfrac{\pi}{2(1+\sqrt{2})}

解答:

\begin{aligned} I=&\int_0^{\infty}\dfrac{\text{d}x}{\left[x^4+(1+2\sqrt{2})x^2+1\right]\left[x^{100}-x^{98}+\cdots+1\right]}\\ =&\int_0^{\infty}\dfrac{\frac1{x^2}\text{d}x}{\left[\frac1{x^4}+(1+2\sqrt2)\frac1{x^2}+1\right][\frac1{x^{100}}-\frac1{x^{98}}+\cdots+1]}\\ =&\int_0^{\infty}\dfrac{x^{102}\text{d}x}{\left[x^4+(1+2\sqrt{2})x^2+1\right]\left[x^{100}-x^{98}+\cdots+1\right]}\\ 2I=&\int_0^{\infty}\dfrac{1+x^{102}\text{d}x}{\left[x^4+(1+2\sqrt{2})x^2+1\right]\left[x^{100}-x^{98}+\cdots+1\right]}\\ =&\int_0^{\infty}\dfrac{(x^2+1)(x^{100}-x^{98}+\cdots+1)\text{d}x}{\left[x^4+(1+2\sqrt{2})x^2+1\right]\left[x^{100}-x^{98}+\cdots+1\right]}\\ =&\int_0^{\infty}\dfrac{x^2+1}{x^4+(1+2\sqrt{2})x^2+1}\text{d}x\\ =&\int_0^{\infty}\dfrac{1+\frac1{x^2}}{x^2+\frac1{x^2}+(1+2\sqrt{2})}\text{d}x\\ =&\int_0^{\infty}\dfrac{\text{d}(x-\frac1x)}{(x-\frac1x)^2+3+2\sqrt2}\\ =&\dfrac{1}{1+\sqrt2}\arctan\left(\dfrac{t-\frac{1}{t}}{1+\sqrt2}\right)\bigg|_0^{\infty}\\ =&\dfrac{\pi}{1+\sqrt2}\\ I=&\dfrac{\pi}{2(1+\sqrt2)} \end{aligned}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,776评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,527评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,361评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,430评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,511评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,544评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,561评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,315评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,763评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,070评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,235评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,911评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,554评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,173评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,424评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,106评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,103评论 2 352

推荐阅读更多精彩内容