Chapter 2 Representing Position and Orientation

Chapter 2 Representing Position and Orientation

A fundamental requirement in robotics and computer vision is to represent the position and orientation of objects in an environment. Such objects include robots, cameras, work pieces, obstacles and paths.

A point in space is a familiar concept from mathematics and can be described by a coordinate vector, also known as a bound vector, as shown in Fig. 2.1a. The vector represents the displacement of the point with respect to some reference coordinate frame. A coordinate frame, or Cartesian coordinate system, is a set of orthogonal axes which intersect at a point known as the origin.

More frequently we need to consider a set of points that comprise some object. We assume that the object is rigid and that its constituent points maintain a constant relative position with respect to the object’s coordinate frame as shown in Fig. 2.1b. Instead of describing the individual points we describe the position and orientation of the object by the position and orientation of its coordinate frame. A coordinate frame is labelled, {B} in this case, and its axis labels xB and yB adopt the frame’s label as their subscript.

Fig. 2.1.

a The point P is described by a coordinate vector with respect to an absolute coordinate frame. b The points are described with respect to the object’s coordinate frame {B} which in turn is described by a relative pose ξB. Axes are denoted by thick lines with an open arrow, vectors by thin lines with a swept arrow head and a pose by a thick line with a solid head

Fig. 2.2.

The point P can be described by coordinate vectors relative to either frame {A} or {B}. The pose of {B} relative to {A} is AξB

The position and orientation of a coordinate frame is known as its pose and is shown graphically as a set of coordinate axes. The relative pose of a frame with respect to a reference coordinate frame is denoted by the symbol ξ – pronounced ksi. Figure 2.2 shows two frames {A} and {B} and the relative pose AξB which describes {B} with respect to {A}. The leading superscript denotes the reference coordinate frame and the subscript denotes the frame being described. We could also think of AξB as describing some motion – imagine picking up {A} and applying a displacement and a rotation so that it is transformed to {B}. If the initial superscript is missing we assume that the change in pose is relative to the world coordinate frame denoted O.

The point P in Fig. 2.2 can be described with respect to either coordinate frame.Formally we express this as

(2.1)

where the right-hand side expresses the motion from {A} to {B} and then to P. The operator · transforms the vector, resulting in a new vector that describes the same point but with respect to a different coordinate frame.

An important characteristic of relative poses is that they can be composed or compounded. Consider the case shown in Fig. 2.3. If one frame can be described in terms of another by a relative pose then they can be applied sequentially

which says, in words, that the pose of {C} relative to {A} can be obtained by compounding the relative poses from {A} to {B} and {B} to {C}. We use the operator ⊕ to indicate composition of relative poses.

For this case the point P can be described

Later in this chapter we will convert these abstract notions of ξ, · and ⊕ into standard mathematical objects and operators that we can implement in MATLAB®.

In the examples so far we have shown 2-dimensional coordinate frames. This is appropriate for a large class of robotics problems, particularly for mobile robots which operate in a planar world. For other problems we require 3-dimensional coordinate frames to describe objects in our 3-dimensional world such as the pose of a flying or underwater robot or the end of a tool carried by a robot arm.

Fig. 2.3.

The point P can be described by coordinate vectors relative to either frame {A}, {B} or {C}. The frames are described by relative poses

In relative pose composition we can check that we have our reference frames correct by ensuring that the subscript and superscript on each side of the ⊕ operator are matched. We can then cancel out the intermediate subscripts and superscripts


leaving just the end most subscript and superscript which are shown highlighted.

Figure 2.4 shows a more complex 3-dimensional example in a graphical form where we have attached 3D coordinate frames to the various entities and indicated some relative poses. The fixed camera observes the object from its fixed viewpoint and estimates the object’s pose relative to itself. The other camera is not fixed, it is attached to the robot at some constant relative pose and estimates the object’s pose relative to itself.

An alternative representation of the spatial relationships is a directed graph (see Appendix J) which is shown in Fig. 2.5. Each node in the graph represents a pose and each edge represents a relative pose. An arrow from X to Y is denoted XξY and describes the pose of Y relative to X. Recalling that we can compose relative poses using the ⊕ operator we can write some spatial relationships

and each equation represents a loop in the graph. Each side of the equation represents a path through the network, a sequence of edges (arrows) that are written in head to tail order. Both sides of the equation start and end at the same node.
A very useful property of poses is the ability to perform algebra.

In mathematical objects terms poses constitute a group – a set of objects that supports an associative binary operator (composition) whose result belongs to the group, an inverse operation and an identity element. In this case the group is the special Euclidean group in either 2 or 3 dimensions which are commonly referred to as SE(2) or SE(3) respectively.

The second loop equation says, in words, that the pose of the robot is the same as composing two relative poses: from the world frame to the fixed camera and from the fixed camera to the

Fig. 2.4.Multiple 3-dimensional coordinate frames and relative poses

René Descartes (1596–1650) was a French philosopher, mathematician and part-time mercenary. He is famous for the philosophical statement “Cogito, ergo sum” or “I am thinking, therefore I exist” or “I think, therefore I am”. He was a sickly child and developed a life-long habit of lying in bed and thinking until late morning. A possibly apocryphal story is that during one such morn- ing he was watching a fly walk across the ceiling and realized that he could describe its position in terms of its distance from the two edges of the ceiling. This coordinate system, the Cartesian system, forms the basis of modern (analytic) geometry and influenced the development of mod- ern calculus. In Sweden at the invitation of Queen Christine he was obliged to rise at 5 a.m., breaking his lifetime habit – he caught pneumonia and died. His remains were later moved to Paris, and then moved several times, and there is now some debate about where his remains are. After his death, the Roman Catholic Church placed his works on the Index of Prohibited Books.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,591评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,448评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,823评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,204评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,228评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,190评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,078评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,923评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,334评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,550评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,727评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,428评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,022评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,672评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,826评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,734评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,619评论 2 354

推荐阅读更多精彩内容

  • 最是人间留不住,朱颜辞镜花辞树。 就这么推开了那扇深宅大院里的高门,入眼的景致恍若隔了一片雾霭,却能清晰的捕捉到那...
    辞衫阅读 240评论 0 2
  • 常言道:人生不如意,十有八九。所以,在日常生活中我们过多去关注那八九,我们肯定过的非常纠结,因为都是不如意啊。这里...
    二十少阅读 294评论 0 1
  • “婚姻不是爱情的坟墓,缺乏信心和耐心才是。如果爱情是让你爱上一个特别的人,婚姻旨在教会你的是,如何去爱一个普通人。...
    傅踢踢阅读 409评论 0 1