pymongo 插数据

批量插入

insert_one

这种方法在数据量较小时可以很好的工作,但是当数据量非常大时,此种操作会非常慢,我们需要通过批量写入的方式来写入数据。

insert_many

参数:

  • documents
  • ordered :为True时,迫使MongoDB按顺序同步插入数据;为False,MongoDB会并发的不按固定顺序进行批量插入。显然当我们对性能有要求时,将该参数设为False是非常必要的。
  • bypass_document_validation : MongoDB3.2之后加入了document validation功能,用于验证写入的文档是否符合collection制定的规则,具体可以参考reference中的链接。而既然是验证就肯定需要花费时间,当我们对性能有极致要求时,也可以将此参数设为True,从而越过验证,直接写入。
  • session

批量更新

前面的例子在插入操作时非常有效,但是对于更新操作由于update_many无法针对每一个doc进行更新,如本例中针对每一个uid进行更新,那么就需要使用bulk_write操作。

from pymongo import UpdateOne

update_operations = []
for uid, user_data in user_dict.items():
    op = UpdateOne({'uid': uid}, {'$set': {'user_data': user_data}}, upsert=True)
    update_operations.append(op)

user_collection.bulk_write(update_operations, ordered=False, bypass_document_validation=True)

批量读取

批量读取我们可以使用$in操作符,但是需要注意的是如果$in针对的list 过大,那么可能会导致报错pymongo.errors.DocumentTooLarge, 目前我的做法是将大的 list 分割成1000个一段,然后分段查询

list_length = len(uid_list)
iter_size = 1000
current = 0
while current < list_length:
    end = current + iter_size
    uid_segment = uid_list[current: end]
    result_cursor = mongo_collection.find({"uid": {"$in": uid_segment}})
    for user_info in result_cursor:
        # do something
        ...
    current = current + iter_size
异常处理

在实践过程中,会遇到异常的情况,尤其是写入的时候,可能由于各种原因导致写入失败,因此需要catch exception,并打印详细信息,如下:

try:
    user_collection.insert_many(
        data_iter, ordered=False, bypass_document_validation=True)
except BulkWriteError as e:
    log.error(e.details)

原文: https://geekpy.github.io/2018/04/20/MongoDB%E5%A4%A7%E6%89%B9%E9%87%8F%E8%AF%BB%E5%86%99%E6%95%B0%E6%8D%AE%E4%BC%98%E5%8C%96%E8%AE%B0%E5%BD%95/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容