『算法』摊还分析

聚合分析(aggregate analysis)

一个 n 个操作的序列最坏情况下花费的总时间为T(n), 则在最坏情况下, 每个操作的摊还代价为 \frac{T(n)}{n}

如栈中的 push, pop 操作都是 O(1), 增加一个新操作 multipop,

def multipop(stk,k):
  while not stk.empty() and k>0:
    stk.pop()
    k-=1

multipop 的时间复杂度为 min(stk.size,k), 最坏情况为 O(n), 则 n 个包含 push pop multipop 的操作列的最坏情况是 O(n^2), 并不是这样, 注意到, 必须栈中有元素, 再 pop, 所以 push 操作与pop 操作(包含 multipop中的pop), 个数相当, 所以 实际上应为 O(n), 每个操作的摊还代价 为O(1)

核算法 (accounting method)

对不同操作赋予不同费用 cost (称为摊还代价 c_i'), 可能多于或者少于其实际代价 c_i

c_i'>c_i, 将 c_i'-c_i( credit) 存入数据结构中的特定对象.. 对于后续 c_i'<c_i时, 可以使用这些credit来 支付差额.. 有要求
\sum_{i}c_i' \geqslant \sum_{i}c_i

如栈

op c_i' c_i
push 2 1
pop 0 1
multipop 0 min(s,k)

由核算法, 摊还代价满足要求, 所以 n 个操作总代价 O(n), 每个操作摊还代价为 O(1)

势能法(potential method)

势能释放用来支付未来操作的代价, 势能是整个数据结构的, 不是特定对象的(核算法是).

数据结构 D_0为初始状态, 依次 执行 n 个操作 op_i进行势能转换 D_i =op_i(D_{i-1}), i=1,2,\ldots,n , 各操作代价为 c_i

势函数 \Phi:D_i\rightarrow R, \Phi(D_i)即为 D_i的势

则第 i 个操作的摊还代价
c_i'=c_i+\Phi(D_i)-\Phi(D_{i-1})


\sum_{i=1}^{n}c_i'=\sum_{i=1}^{n}c_i+\Phi(D_n)-\Phi(D_0)

如果定义一个势函数\Phi, st \ \Phi(D_i)\geqslant\Phi(D_0), 则总摊还代价给出了实际代价的一个上界
可以简单地以 D_0 \text{为参考状态}, then \ \Phi(D_0)=0

例如栈操作,
设空栈为 D_0, 势函数定义为栈的元素数
对于push, \Phi(D_i)-\Phi(D_0)=1
c' = c +\Phi(D_i)-\Phi(D_0) = c+1 = 2

对于 multipop, \Phi(D_i)-\Phi(D_0)=- min(k,s)
c' = c - min(k,s) = 0

同理 pop 的摊还代价也是0, 则总摊还代价的上界(最坏情况) 为 O(n)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,607评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,239评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,960评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,750评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,764评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,604评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,347评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,253评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,702评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,893评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,015评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,734评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,352评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,934评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,052评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,216评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,969评论 2 355

推荐阅读更多精彩内容