先验概率、后验概率与似然估计

转载自:先验分布、后验分布、似然估计这几个概念是什么意思,它们之间的关系是什么? - 知乎

下面举例解释先验概率、后验概率与似然估计:

隔壁老王要去10公里外的一个地方办事,他可以选择走路,骑自行车或者开车,并花费了一定时间到达目的地。在这个事件中,可以把交通方式(走路、骑车或开车)认为是原因,花费的时间认为是结果。

若老王花了一个小时的时间完成了10公里的距离,那么很大可能是骑车过去的,当然也有较小可能老王是个健身达人跑步过去的,或者开车过去但是堵车很严重。若老王一共用了两个小时的时间完成了10公里的距离,那么很有可能他是走路过去的。若老王只用了二十分钟,那么很有可能是开车。这种先知道结果,然后由结果估计原因的概率分布,p(交通方式|时间),就是后验概率。

老王早上起床的时候觉得精神不错,想锻炼下身体,决定跑步过去;也可能老王想做个文艺青年试试最近流行的共享单车,决定骑车过去;也可能老王想炫个富,决定开车过去。老王的选择与到达目的地的时间无关。先于结果,确定原因的概率分布,p(交通方式),就是先验概率。

老王决定步行过去,那么很大可能10公里的距离大约需要两个小时;较小可能是老王平时坚持锻炼,跑步过去用了一个小时;更小可能是老王是个猛人,40分钟就到了。老王决定骑车过去,很可能一个小时就能到;较小可能是老王那天精神不错加上单双号限行交通很通畅,40分钟就到了;还有一种较小可能是老王运气很差,连着坏了好几辆共享单车,花了一个半小时才到。老王决定开车过去,很大可能是20分钟就到了,较小可能是那天堵车很严重,磨磨唧唧花了一个小时才到。这种先确定原因,根据原因来估计结果的概率分布,p(时间|交通方式),就是似然估计。

老王去那个地方好几趟,不管是什么交通方式,得到了一组关于时间的概率分布。这种不考虑原因,只看结果的概率分布,p(时间),也有一个名词:evidence。

最后,甩出著名的贝叶斯公式:

P(\theta |x)=\frac{P(x|\theta)P(\theta )}{P(x)}

x: 观察得到的数据(结果)

\theta : 决定数据分布的参数(原因)

P(\theta|x): posterior

P(\theta): prior

P(x|\theta): likelihood

P(x): evidence

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,265评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,078评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,852评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,408评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,445评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,772评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,921评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,688评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,130评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,467评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,617评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,276评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,882评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,740评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,967评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,315评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,486评论 2 348