Description
There are a total of n courses you have to take, labeled from 0
to n - 1
.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Note:
- The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
- You may assume that there are no duplicate edges in the input prerequisites.
Hints:
- This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
- Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
- Topological sort could also be done via BFS.
Solution
Topological sort BFS, time O(n + e), space O(n)
对于一个有向图来说,如果其中存在环,这个图不存在拓扑排序。反之如果没有环,则一定有拓扑排序。
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
List<Integer>[] graph = new ArrayList[numCourses]; // i -> j
int[] indegree = new int[numCourses];
for (int i = 0; i < numCourses; ++i) {
graph[i] = new ArrayList<>();
}
for (int[] prerequisite : prerequisites) {
int course = prerequisite[0];
int pre = prerequisite[1];
graph[pre].add(course);
++indegree[course];
}
Queue<Integer> queue = new LinkedList<>();
for (int i = 0; i < numCourses; ++i) {
if (indegree[i] == 0) {
queue.offer(i);
}
}
int count = 0;
while (!queue.isEmpty()) {
int course = queue.poll();
++count;
for (Integer i : graph[course]) {
if (--indegree[i] == 0) {
queue.offer(i);
}
}
}
return count == numCourses;
}
}
DFS
从graph的每个节点开始,如果全都没有遇到cycle,则可以finish。
注意这里遇到一个坑,原本想用Arrays.fill(graph, new ArrayList<>())初始化graph,后来发现graph中的每个元素都指向同一个ArrayList对象...还是乖乖地一个一个实例化吧。
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
List<Integer>[] graph = new ArrayList[numCourses]; // i -> j
for (int i = 0; i < numCourses; ++i) {
graph[i] = new ArrayList<>();
}
for (int[] prerequisite : prerequisites) {
graph[prerequisite[1]].add(prerequisite[0]);
}
boolean[] visited = new boolean[numCourses];
for (int i = 0; i < numCourses; ++i) {
if (!dfs(i, graph, visited)) {
return false;
}
}
return true;
}
// return false if cycle detected, means cannot finish
public boolean dfs(int i, List<Integer>[] graph, boolean[] visited) {
if (visited[i]) {
return false;
}
visited[i] = true;
for (int j : graph[i]) {
if (!dfs(j, graph, visited)) {
return false;
}
}
visited[i] = false;
return true;
}
}