网络爬虫:多任务-协程

迭代器

  • 迭代是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退
  1. 可迭代对象 我们已经知道可以对list、tuple、str等类型的数据使用for...in...的循环语法从其中依次拿到数据进行使用,我们把这样的过程称为遍历,也叫迭代。

  2. 如何判断一个对象是否可以迭代

from collections import Iterable

print(isinstance([],Iterable)) --> True

print(isinstance(1,Iterable)) -->False
  1. 可迭代对象进行迭代使用的过程,每迭代一次(即在for...in...中每循环一次)都会返回对象中的下一条数据,一直向后读取数据直到迭代了所有数据后结束。
  • 可迭代对象通过_iter方法向我们提供一个迭代器,我们在迭代一个可迭代对象的时候,实际上就是先获取该对象提供的一个迭代器,然后通过这个迭代器来依次获取对象中的每一个数据。一个具备了 _iter 方法的对象,就是一个 可迭代对象
  1. iter()函数与next()函数
  • list、tuple等都是可迭代对象,我们可以通过iter()函数获取这些可迭代对象的迭代器。然后我们可以对获取到的迭代器不断使用next()函数来获取下一条数据。iter()函数实际上就是调用了可迭代对象的_iter_方法。
  1. 如何判断一个对象是否是迭代器
from collections import Iterator

print(isinstance([1,2], Iterator)) -->False

print(isinstance(iter([1,2]), Iterator)) -->True
  1. 迭代器是用来帮助我们记录每次迭代访问到的位置,当我们对迭代器使用next()函数的时候,迭代器会向我们返回它所记录位置的下一个位置的数据。实际上,在使用next()函数的时候,调用的就是迭代器对象的next方法。所以,我们要想构造一个迭代器,就要实现它的next方法。并且python要求迭代器本身也是可迭代的,所以我们还要为迭代器实现iter方法,迭代器的iter方法返回自身即可。
  • 一个实现了_iter_方法和next方法的对象,就是迭代器。

生成器

利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成。但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据。为了达到记录当前状态,并配合next()函数进行迭代使用,我们可以采用更简便的语法,即生成器(generator)。生成器是一类特殊的迭代器。

在使用生成器实现的方式中,我们将原本在迭代器_next_方法中实现的基本逻辑放到一个函数中来实现,但是将每次迭代返回数值的return换成了yield,此时新定义的函数便不再是函数,而是一个生成器了。

使用了yield关键字的函数不再是函数,而是生成器。(使用了yield的函数就是生成器)
yield关键字有两点作用:
    保存当前运行状态(断点),然后暂停执行,即将生成器(函数)挂起
    将yield关键字后面表达式的值作为返回值返回,此时可以理解为起到了return的作用
可以使用next()函数让生成器从断点处继续执行.

协程

  • 协程,又称微线程,纤程
    协程是python个中另外一种实现多任务的方式,只不过比线程更小占用更小执行单元(理解为需要的资源)。 它自带CPU寄存器上下文。这样只要在合适的时机, 我们可以把一个协程 切换到另一个协程。 只要这个过程中保存或恢复 CPU上下文那么程序还是可以运行的。

协程和线程差异

在实现多任务时, 线程切换从系统层面远不止保存和恢复 CPU上下文这么简单。 操作系统为了程序运行的高效性每个线程都有自己缓存Cache等等数据,操作系统还会帮你做这些数据的恢复操作。 所以线程的切换非常耗性能。但是协程的切换只是单纯的操作CPU的上下文,所以一秒钟切换个上百万次系统都抗的住。

  • yeild简单实现
import time

def work1():
    while True:
        print("----work1---")
        yield
        time.sleep(0.5)

def work2():
    while True:
        print("----work2---")
        yield
        time.sleep(0.5)

def main():
    w1 = work1()
    w2 = work2()
    while True:
        next(w1)
        next(w2)

if __name__ == "__main__":
    main()
实质: 其实任务是在主线程中并发执行的,看上去像同时执行而已,当执行next()的时候,函数执行到yield的时候先暂停一下,然后之后再调用next()的时候,接着上一次暂停的位置执行

实现协程

  • .greenlet的使用
from greenlet import greenlet
import requests

def download1():
    print('正在下载1')
    #耗时的操作
    response = requests.get(url='https://github.com/')
    gre2.switch()
    print('download1下载完了')
    gre2.switch()


def download2():
    print('正在下载2')
    response = requests.get(url='https://github.com/')
    gre1.switch()
    print('download2下载完了')


gre1 = greenlet(download1)
gre2 = greenlet(download2)
gre1.switch()
  • greenlet已经实现了协程,但是这个还的人工切换,python还有一个比greenlet更强大的并且能够自动切换任务的模块gevent
#gevent能够在内部自己实现携程之间的切换

from gevent import monkey,pool
import gevent,requests
import lxml.etree as etree

# 有耗时操作时需要
monkey.patch_all()  # 将程序中用到的耗时操作的代码,换为gevent中自己实现的模块


def download(url):
    print(url+'正在下载1')
    header = {'User-Agent':'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:61.0) Gecko/20100101 Firefox/61.0'}
    response = requests.get(url,headers=header)
    print(len(response.text),url+'已完成1')

def download2(url):
    print(url+'正在下载2')
    header = {'User-Agent':'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:61.0) Gecko/20100101 Firefox/61.0'}
    response = requests.get(url,headers=header)
    print(len(response.text),url+'已完成2')

pool = pool.Pool(2)

gevent.joinall(
    [
        pool.spawn(download,'https://www.yahoo.com/'),
        pool.spawn(download,'https://www.taobao.com/'),
        pool.spawn(download,'https://github.com/'), 
        pool.spawn(download2,'https://www.yahoo.com/'),
        pool.spawn(download2,'https://www.taobao.com/'),
        pool.spawn(download2,'https://github.com/'), 
    ]
)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容

  • 一、总体内容 1.1、协程的介绍 1.2、迭代器以及迭代器的应用 1.3、生成器(生成器与迭代器保存的都是生成数据...
    IIronMan阅读 861评论 0 1
  • python之进程、线程与协程 有这么个例子说他们的区别,帮助理解很有用。 有一个老板想开一个工厂生产手机。 他需...
    道无虚阅读 3,175评论 0 3
  • 第五章 序列和协程 来源:Chapter 5: Sequences and Coroutines 译者:飞龙 协议...
    布客飞龙阅读 645评论 0 37
  • 多进程/线程 最早的服务器端程序都是通过多进程、多线程来解决并发IO的问题。进程模型出现的最早,从Unix 系统诞...
    Newt0n阅读 15,248评论 9 69
  • 近期,有机会接二连三地与诸多优秀人士近距离地交流,发现在这些优秀人士身上有着诸多的共同点。 一是人格魅力; 二是远...
    熠心励行阅读 226评论 0 0