新项目重构,由于数据量太大,采用了mysql存主表和hbase存记录表的方式
(使用的phoenix操作hbase,通过mybatis多数据源连接mysql和phoenix,具体实现移步https://blog.csdn.net/qq_31349087/article/details/88535387)
现有一个需求,分别按老师,班级,校区的维度查询学员的实操合格率,作业达标率,目前老师,班级,校区信息都在mysql,学员的做题记录在hbase,经过分析,按时间先在mysql查询班级列表,每条记录包含该班的学员和计划做题的题目id,然后根据学员id和题目id去hbase里做统计查询,之后在使用java8的分组查出老师和校区维度的数据
@Service
public class JobStatServiceImpl implements JobStatService {
@Autowired
private ErrorHistoryMapper errorHistoryMapper;
@Autowired
private HBaseErrorHistoryMapper hBaseErrorHistoryMapper;
@Autowired
private CacheRedisService cacheRedisService;
@Override
public List<JobStatResult> getJobStatList(LocalDateTime beginDate, LocalDateTime endDate) {
List<JobStatResult> jobStatList = errorHistoryMapper.getJobStatList(beginDate, endDate);
if (jobStatList != null && !jobStatList.isEmpty()) {
jobStatList.parallelStream().iterator().forEachRemaining(jobStatResult -> {
List<Integer> studentIds = strToList(jobStatResult.getStudentIds(), true);
List<String> sectionCodes = strToList(jobStatResult.getSectionCodes(), false);
Map<String, Long> jobTrueCount = hBaseErrorHistoryMapper.getJobTrueCount(studentIds, sectionCodes);
jobStatResult.setPlanNumber(getPlanNumber(jobStatResult.getSectionCodes()));//计划做题数
jobStatResult.setDoneNumber(jobTrueCount.get("DONENUMBER"));//完成数
jobStatResult.setTrueNumber(jobTrueCount.get("TRUENUMBER"));//正确数
});//班级达标率
System.err.println(JSON.toJSONString(jobStatList));
Collection<JobStatResult> values = jobStatList.parallelStream().filter(Objects::nonNull)
.collect(Collectors.groupingBy(JobStatResult::getTeacherId,
Collectors.reducing(new JobStatResult(), (obj1, obj2) -> {
JobStatResult jobStatResult = new JobStatResult();
BeanUtils.copyProperties(obj2, jobStatResult);
jobStatResult.setPlanNumber(obj1.getPlanNumber() + obj2.getPlanNumber());
jobStatResult.setDoneNumber(obj1.getDoneNumber() + obj2.getDoneNumber());
jobStatResult.setTrueNumber(obj1.getTrueNumber() + obj2.getTrueNumber());
return jobStatResult;
}))).values(); //老师达标率
System.err.println(JSON.toJSONString(collect));
Collection<JobStatResult> values = jobStatList.parallelStream().collect(Collectors.groupingBy(JobStatResult::getSchoolCode,
Collectors.reducing(new JobStatResult(), (obj1, obj2) -> {
obj1.setPlanNumber(obj1.getPlanNumber() + obj2.getPlanNumber());
obj1.setDoneNumber(obj1.getDoneNumber() + obj2.getDoneNumber());
obj1.setTrueNumber(obj1.getTrueNumber() + obj2.getTrueNumber());
return obj1;
}))).values();//校区达标率
System.err.println(JSON.toJSONString(values));
}
return jobStatList;
}
/**
* 计划做题数
* @param str
* @return
*/
private Long getPlanNumber(String str) {
AtomicLong planNumber = new AtomicLong(0);
if (str == null || str.isEmpty()) {
return planNumber.get();
}
String[] split = str.split(",");
Arrays.asList(split).parallelStream().filter(s -> {
if (s == null || s.isEmpty())
return false;
return true;
}).forEach(s -> {
Long chapterPlanNumber = cacheRedisService.getChapterPlanNumber(s);
planNumber.addAndGet(chapterPlanNumber);
});
return planNumber.get();
}
/**
* str转list
* @param str
* @param f
* @return
*/
private List strToList(String str, boolean f) {
List list = f ? new ArrayList(){{add(0);}} : new ArrayList(){{add("kckm");}}; //随意设个值,防止为空报错
if (str == null || str.isEmpty()) {
return list;
}
String[] split = str.split(",");
if (f) {
List<Integer> collect = Arrays.stream(split).filter(s -> {
if (s == null || s.isEmpty())
return false;
return true;
}).mapToInt(Integer::valueOf).boxed().collect(Collectors.toList());
list.addAll(collect);
} else {
List<String> collect = Arrays.stream(split).filter(s -> {
if (s == null || s.isEmpty())
return false;
return true;
}).collect(Collectors.toList());
list.addAll(collect);
}
return list;
}
}
使用Collectors.groupingBy按字段分组,然后使用Collectors.reducing进行合并,这里的java8的mapReduce和hadoop的mapReduce都是一种编程模型,map(映射)reduce(规约),我这里用的是list.parallelStream(),内部会自己创建多线程跑你自定义的任务()好像是用的jdk7的forkjoin框架),所以需要注意线程安全问题,我这里统计计划做题数的时候定义了一个AtomicLong原子类,可以保证多线程环境下累加的数据正确性
建议,hbase不支持事务,mysql+hbase不能保证数据一致性,最好hbase存一些比较久远的数据,新进的数据还是放mysql,这样关系型数据库也方便操作