场景题?

TopN解决方式?

答:
1. 10亿个数中如何高效地找到最大的一个数

将10亿个数据分成1000份,每份100万个数据,找到每份数据中最大的那个数据,最后在剩下的1000个数据里面找出最大的数据。 从100万个数据遍历选择最大的数,此方法需要每次的内存空间为10^6*4=4MB,一共需要1000次这样的比较。

2. 10亿个数中如何高效地找到第K个数

对于top K类问题,通常比较好的方案是分治+hash+小顶堆:

先将数据集按照Hash方法分解成多个小数据集
然后用小顶堆求出每个数据集中最大的K个数
最后在所有top K中求出最终的top K。
如果是top词频可以使用分治+ Trie树/hash +小顶堆:

先将数据集按照Hash方法分解成多个小数据集
然后使用Trie树或者Hash统计每个小数据集中的query词频
之后用小顶堆求出每个数据集中出频率最高的前K个数
最后在所有top K中求出最终的top K。
时间复杂度:建堆时间复杂度是O(K),算法的时间复杂度为O(NlogK)。

3. top K常用的方法

快排+选择排序:排序后的集合中进行查找
时间复杂度: 时间复杂度为O(NlogN)
缺点:需要比较大的内存,且效率低

局部淘汰:取前K个元素并排序,然后依次扫描剩余的元素,插入到排好序的序列中(二分查找),并淘汰最小值。
时间复杂度: 时间复杂度为O(NlogK) (logK为二分查找的复杂度)。

分治法:将10亿个数据分成1000份,每份100万个数据,找到每份数据中最大的K个,最后在剩下的1000K个数据里面找出最大的K个,100万个数据里面查找最大的K个数据可以使用Partition的方法
时间复杂度: 时间复杂度为O(N+1000
K)

Hash法: 如果这10亿个数里面有很多重复的数,先通过Hash法,把这10亿个数字去重复,这样如果重复率很高的话,会减少很大的内存用量,从而缩小运算空间,然后通过分治法或最小堆法查找最大的K个数。

小顶堆: 首先读入前K个数来创建大小为K的小顶堆,建堆的时间复杂度为O(K),然后遍历后续的数字,并于堆顶(最小)数字进行比较。如果比最小的数小,则继续读取后续数字;如果比堆顶数字大,则替换堆顶元素并重新调整堆为最小堆。
时间复杂度: 时间复杂度为O(NlogK)

Trie树: 如果是从10亿个重复比较多的单词找高频词汇,数据集按照Hash方法分解成多个小数据集,然后使用Trie树统计每个小数据集中的query词频,之后用小顶堆求出每个数据集中出现频率最高的前K个数,最后在所有top K中求出最终的top K。
适用范围:数据量大,重复多,但是数据种类小可以放入内存
时间复杂度:O(Len*N),N为字符串的个数,Len为字符串长度

桶排序:一个数据表分割成许多buckets,然后每个bucket各自排序,或用不同的排序算法,或者递归的使用bucket sort算法。也是典型的divide-and-conquer分而治之的策略。
使用范围:如果已知了数据的范围,那么可以划分合适大小的桶,直接借用桶排序的思路
时间复杂度:O(N*logM),N 为待排序的元素的个数,M为桶的个数

计数排序:计数排序其实是桶排序的一种特殊情况。当要排序的 n 个数据,所处的范围并不大的时候,比如最大值是 k,我们就可以把数据划分成 k 个桶。每个桶内的数据值都是相同的,省掉了桶内排序的时间。
适用范围:只能用在数据范围不大的场景
时间复杂度:O(N)

基数排序:将整数按位数切割成不同的数字,然后按每个位数分别比较。
适用范围:可以对字符串类型的关键字进行排序。
时间复杂度: O(N*M),M为要排序的数据的位数

4. 实际情况

(1)单机+单核+足够大内存

  • 顺序遍历(或先用HashMap求出每个词出现的频率)
    • 查找10亿个查询次(每个占8B)中出现频率最高的10个,考虑到每个查询词占8B,则10亿个查询次所需的内存大约是10^9 * 8B=8GB内存。如果有这么大内存,直接在内存中对查询次进行排序,顺序遍历找出10个出现频率最大的即可。
    • 优点: 简单快速

(2)单机+多核+足够大内存

  • partition
    • 直接在内存总使用Hash方法将数据划分成n个partition,每个partition交给一个线程处理,线程的处理逻辑同(1)类似,最后一个线程将结果归并。
    • 瓶颈:数据倾斜。每个线程的处理速度可能不同,快的线程需要等待慢的线程。
    • 解决的方法:将数据划分成c×n个partition(c>1),每个线程处理完当前partition后主动取下一个partition继续处理,知道所有数据处理完毕,最后由一个线程进行归并。

(3)单机+单核+受限内存

  • 分治 + (1)
    • 将原文件中的数据切割成M小文件,如果小文件仍大于内存大小,继续采用Hash的方法对数据文件进行分割,直到每个小文件小于内存大小,这样每个文件可放到内存中处理。采用(1)的方法依次处理每个小文件。

(4)多机+受限内存

  • 数据分发 + (3)
    • 将数据分发到多台机器上,每台机器采用(3)中的策略解决本地的数据。可采用hash+socket方法进行数据分发。
  • MapReduce
    • top K问题很适合采用MapReduce框架解决,用户只需编写一个Map函数和两个Reduce 函数,然后提交到Hadoop
    • 首先根据数据值或者把数据hash(MD5)后的值按照范围划分到不同的机器上,最好可以让数据划分后一次读入内存,这样不同的机器负责处理不同的数值范围,实际上就是Map。
    • 得到结果后,各个机器只需拿出各自出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是Reduce过程。
    • 对于Map函数,采用Hash算法,将Hash值相同的数据交给同一个Reduce task;对于第一个Reduce函数,采用HashMap统计出每个词出现的频率,对于第二个Reduce 函数,统计所有Reduce task,输出数据中的top K即可。

高并发超卖问题?

答:
超卖问题
超卖问题
超卖问题

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,290评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,107评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,872评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,415评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,453评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,784评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,927评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,691评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,137评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,472评论 2 326
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,622评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,289评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,887评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,741评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,977评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,316评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,490评论 2 348

推荐阅读更多精彩内容

  • 如果一个外卖配送单子要发布,现在有200个骑手都想要接这一单,如何保证只有一个骑手接到单子? 如果只是单机,采用v...
    一直要努力学习啊阅读 1,328评论 0 0
  • 27. 二叉树的镜像 求一棵树的镜像的过程:先前序遍历这棵树的每个节点,如果遍历到的节点有子节点,就交换它的两个子...
    oneoverzero阅读 277评论 0 2
  • 第一部分、十道海量数据处理面试题 1、海量日志数据,提取出某日访问百度次数最多的那个IP。 此题,在我之前的一篇文...
    零一间阅读 916评论 0 5
  • 1、用C语言实现一个revert函数,它的功能是将输入的字符串在原串上倒序后返回。 2、用C语言实现函数void ...
    希崽家的小哲阅读 6,253评论 0 12
  • 我是黑夜里大雨纷飞的人啊 1 “又到一年六月,有人笑有人哭,有人欢乐有人忧愁,有人惊喜有人失落,有的觉得收获满满有...
    陌忘宇阅读 8,529评论 28 53