9种数据分析方法(上)

本章的内容有什么?解决问题有什么?可以回忆一下在日常工作中会有一些数据指标。比如:DAU留存这些指标,它是可以随时观测的,当你想知道前天或者之前的一些数据指标,直接去看就可以(内部系统或者外部系统)

举个例子:假设你们公司产品的DAU下跌百分之三十。为什么下跌?原因是什么?当你想知道原因的时候你应该用什么工具?这个时候就没有你去观测数据那么直接了。

其实我们工作中可能有很多类似这样的问题。

所以我们欠缺的是:如何把工作中产生的问题,与我们的数据工具和可以拿得到的数据建立对应关系。观测数据看见趋势异常下,挖掘数据背后的意义。基于数据分析的基础的思考,最后才可以形成对业务的洞察。

为大家介绍9种数据分析方法。

对比分析,多维度拆解,漏斗观察,分布情况,用户留存,用户画像,归因查找,路径挖掘,行为序列。


一、对比分析

日常数据分析的目的:对功能/策略的好坏的去评估最常见的就是对比,因为没有对比就没有好坏。通过对比我们才知道产品或功能的好坏。

做对比分析的时候我们要了解三点。

第一点:比什么?

绝对值(本省具备价值的数字)比如:销售金额,阅读数 。缺点:不易得知问题的严重度。

比例值(在具体环境中看比例才具备对比价值)比如:活跃占比,注册转化率。缺点:易受到极端值影响。

第二点:怎么比?

环比:与当前时间范围相邻的上一个时间范围对比    比如:日环比(今天vs昨天)月环比(本月vs上月)

优点:对短期内具有连续性的数据进行分析。

使用场景:需要根据相邻时间范围的数字对当前时间范围的指标进行设定。

同比:与当前时间范围上层时间范围的前一范围中的同样数据对比    比如:年同比(今天vs去年今日)周同比(今天vs上周同日)

优点:观察更长期的数据集。

使用场景:观察时间周期里面有较多的干扰,希望在某种程度上消除这些干扰。

第三点:和谁比?

和自己比:  时间维度,不同业务线,过往经验估计。

行业比:是自身因素还是行业趋势?(都跌,能否比同行跌的少    都涨,是否比同行涨的慢)

二、多维度拆解


app启动事件分析

1、按照设备来查看

可以看出那种型号的手机用户使用比较多,是否符合我们产品的定位。(来证明用户群体是否正确)

2、按照启动来源查看

一般情况下,产品启动方式很多种。这个数据可以得到用户是通过什么方式进入。考虑一下原因?平台使用的什么方式是有效的。

3、按照城市等级来查看

这可得到是一线城市使用多还是其他城市多。有了结果就要查找原因,看看是否因为产品刚刚上线的原因,还是运营重的城市打开率高。

4、按照新老用户来查看

这时会发现大v推广,日活没有大的改变,新增用户在涨,老用户下降。这时要找一下原因。是不是因为我们引入了大量用户,缺没有办法将这些用户留住。(运营方面的问题)

分析完成之后的结果

目标群体是否正确。用户大部分是通过什么方式打开app。是否因为我们的运营努力不足,导致用户只在大城市之间使用。为什么明明新用户增加,却人活没有改变。


多维度拆分小结

运作原理:指标/业务流程需要按照多维度拆分,来观察变动。

分析单一指标的构成:(分栏目的播放量、新老用户比例)

针对一个流程进行拆解分析:(不同渠道的浏览,购买转化率、活动:不同省份活动参与漏斗)

还原行为发生的场景:(观察打赏主播的等级,性别,频道、是否在wifi或4G环境,也会对行为有影响。)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354

推荐阅读更多精彩内容