使用R语言的clusterProfiler对葡萄做GO富集分析

葡萄的参考基因组下载自NCBI,下载链接是
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/003/745/GCF_000003745.3_12X/

基本流程是
  • Hiast2 比对
  • samtools sam 转bam
  • stringtie组装转录本
  • gffcompare将stringtie输出的gtf文件与参考基因组的注释文件做比较得到一- 个merged.combine.gtf
  • 使用merged.combine.gtf 这个文件对每个样本计算表达量,输出文件存储到ballgown文件夹下,这一步用到的命令是 stringtie -e -B -p 8 -G merged.combined.gtf -o ballgown/L01/L01.gtf output_bam/L01.sorted.bam
image.png
  • 接下来是R语言的ballgown包读入数据获取基因和转录本的表达量
    代码是
library(ballgown)
library(genefilter)
library(dplyr)

pheno_data<-read.csv("pheno_data.txt",header=T)
grape_expr <- ballgown(dataDir = "ballgown",
                    samplePattern = "L0",
                    pData = pheno_data)
image.png
image.png

这一步可以拿到gene_id还有gene_name ,FPKM的表达量,cov对用的应该是reads count吧。

接下来是差异表达分析

代码是

grape_expr_filter<-subset(grape_expr,
                          "rowVars(texpr(grape_expr))>1",
                          genomesubset=T)
results_genes <- stattest(grape_expr_filter,
                          feature = "gene",
                          covariate = "time_point",
                          getFC = TRUE,
                          meas = "FPKM")
#results_genes <- arrange(results_genes,pval)
results_genes%>%
  filter(abs(fc)>=2&pval<0.05) -> results_genes_diff

dim(results_genes_diff)
head(results_genes_diff)

现在有了基因id

image.png

接下来是使用clusterProfiler做go注释

这里参考
https://guangchuangyu.github.io/cn/2017/07/clusterprofiler-maize/#disqus_thread

首先把这个基因id对应着转换成 ENTREZID ,这里需要借助对应的gtf注释文件

这里只关注蛋白编码基因

grep 'gene_biotype "protein_coding"' 12X_genomic.gtf > 12X_protein_coding.gtf
#python
from gtfparse import read_gtf
known_proteincoding = read_gtf("12X_protein_coding.gtf")
known_proteincoding.to_csv("all_protein_coding.csv")

GO富集分析的R语言代码

require(AnnotationHub)
hub<-AnnotationHub() #这一步对网路有要求
# aa<-query(hub,'zea')
# aa$title
# query(hub,'Malus domestica')
bb<-query(hub,"Vitis vinifera")
#bb$title
grape<-hub[['AH85815']]
# length(keys(grape))
# columns(grape)
protein_coding_all<-read.csv("all_protein_coding.csv",header=T)
df<-merge(results_genes_diff,grape_expr_filter@expr$trans,by.x="id",by.y="gene_id")
df1<-merge(df,protein_coding_all,by.x="gene_name",by.y="gene_id")
dim(df1)
gene_ids<- 
  df1$db_xref[!duplicated(df1$db_xref)]
gene_ids<-stringr::str_replace(gene_ids,"GeneID:","")


library(clusterProfiler)
bitr(keys(grape)[2],'ENTREZID',c("REFSEQ","GO",
                                 "ONTOLOGY","GENENAME",
                                 "SYMBOL"),grape)
res = enrichGO(gene_ids, 
               OrgDb=grape, pvalueCutoff=0.05, qvalueCutoff=0.05)
help(package="clusterProfiler")
dotplot(res)

最后的结果是

image.png

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容