基于DC/OS建立分布式机器学习系统

姓名:崔少杰       学号:16040510021

转载自://www.greatytc.com/p/fdc44bb41a39=有修改

【嵌牛导读】:基于DC/OS建立分布式机器学习系统

【嵌牛鼻子】:scheduler、server、worker

【嵌牛提问】:如何快速高效的建立分布式机器学习系统?

【嵌牛正文】:之前基于ps-lite实现了word2vec。下一步就是让这个算法能够分布式的跑起来。最简单的分布式方案大概是如下几步:把二进制文件copy到你要跑的机器上。

把每个进程需要读的数据文件copy到相应的地方。

当然,这一切都可以用一个脚本基于SSH来实现。但是会遇到几个问题:

你要跑的机器上有没有足够的CPU和内存资源。

你和别人的程序共同依赖了同一个动态库的不同版本。

你跑的过程中,你的进程被别人不小心kill掉了。

原来启动scheduler的机器IP换了,woker和server都要修改他们依赖的scheduler的地址。

新增加了一批机器,可以跑更多的进程了。

每次都要copy数据文件,每个进程读不同的文件。

......

为了解决上面的问题,你需要3个东西:

分布式的操作系统,来管理每台机器的CPU和内存。

分布式文件系统解决文件的存储和读写。

虚拟机系统来解决不同项目的不同版本的依赖 (当然你可以通过给每个程序都做一个单独的依赖库的目录,但如果依赖特别复杂,甚至是系统的某个底层依赖不同,就比较麻烦)。

而DCOS就是为了解决1,3而设计的。他是mesos+marathon+docker(其实DCOS是一个基于mesos的分布式操作系统,marathon,docker只是他的组件)。

mesos负责分布式的CPU和内存管理。

marathon是基于mesos的封装,提供rest API来使用mesos管理进程。

docker是一个虚拟机系统来保证不同人的程序所依赖的版本不会冲突。

下面详细介绍如何将ps-lite跑在DCOS上。ps-lite有3种类型的服务:

worker: 负责读取训练数据,更新参数。

server:负责存储参数,worker本地的参数会定时和server同步。

scheduler:负责服务发现,worker和server通过scheduler才知道各自在哪里。同时也负责worker和server的进程同步。比如要同时开始工作。只有一台。他的IP和端口事先需要知道,并通过环境变量在启动时告诉worker和server。

因为同一台宿主机上可能会启动多个worker和server。所以worker和server工作的端口不能事先指定,只能随机使用没有被占用的端口。

之前很多集成ps-lite的分布式系统时,都只解决了worker和server的分布式问题(比如用yarn来调度worker和server),而scheduler是找了一台机器单独部署的,这样scheduler的IP/端口事先就能知道并告诉worker和server。但是我希望把scheduler也启动在分布式系统中,方法如下:

将scheduler的任务命名为 sch,并在marathon中启动。同时指定一个端口(比如10000)。并且让docker使用HOST网络模式(用HOST模式是因为性能比较好,而ps-lite又是个网络性能要求很高的应用),且绑定到10000端口。这时,利用mesos-dns, scheduler会自动被赋予一个 sch.marathon.mesos 的域名,然后通过环境变量告诉worker和server。

worker和server原来会随机找端口。需要改成启动时docker被分配随机可用端口,并通过环境变量传给worker/server,然后worker/server绑定该端口。marathon提供了$PORT的环境变量来完成这个任务。

搞定服务发现,剩下就是分布式文件系统了。最简单可以用moosefs,然后mount到每台mesos-slave的机器。

{

"id": "/sw2vscheduler",

"cmd": null,

"cpus": 1,

"mem": 128,

"disk": 0,

"instances": 1,

"container": {

"type": "DOCKER",

"volumes": [],

"docker": {

"image": "registry.aliyuncs.com/xlvector/sw2v",

"network": "HOST",

"privileged": false,

"parameters": [],

"forcePullImage": true

}

},

"env": {

"LD_LIBRARY_PATH": "/tmp/sw2v/ps-lite/deps/lib",

"DMLC_PS_ROOT_URI": "sw2vscheduler.marathon.mesos",

"DMLC_NUM_WORKER": "4",

"DMLC_ROLE": "scheduler",

"DMLC_NUM_SERVER": "1",

"DMLC_PS_ROOT_PORT": "18001"

},

"portDefinitions": [

{

"port": 18001,

"protocol": "tcp",

"labels": {}

}

]

}

{

"id": "/sw2vserver",

"cmd": null,

"cpus": 1,

"mem": 1200,

"disk": 0,

"instances": 1,

"container": {

"type": "DOCKER",

"volumes": [],

"docker": {

"image": "registry.aliyuncs.com/xlvector/sw2v",

"network": "HOST",

"privileged": false,

"parameters": [],

"forcePullImage": true

}

},

"env": {

"LD_LIBRARY_PATH": "/tmp/sw2v/ps-lite/deps/lib",

"DMLC_PS_ROOT_URI": "sw2vscheduler.marathon.mesos",

"DMLC_NUM_WORKER": "4",

"DMLC_ROLE": "server",

"DMLC_NUM_SERVER": "1",

"SW2V_DATA": "/mnt/dcos/text8",

"DMLC_PS_ROOT_PORT": "18001"

},

"portDefinitions": [

{

"port": 10004,

"protocol": "tcp",

"labels": {}

}

]

}

{

"id": "/sw2vworker",

"cmd": null,

"cpus": 1,

"mem": 128,

"disk": 0,

"instances": 4,

"container": {

"type": "DOCKER",

"volumes": [

{

"containerPath": "/mnt/dcos",

"hostPath": "/mnt/dcos",

"mode": "RO"

}

],

"docker": {

"image": "registry.aliyuncs.com/xlvector/sw2v",

"network": "HOST",

"privileged": false,

"parameters": [],

"forcePullImage": true

}

},

"env": {

"LD_LIBRARY_PATH": "/tmp/sw2v/ps-lite/deps/lib",

"DMLC_PS_ROOT_URI": "sw2vscheduler.marathon.mesos",

"DMLC_NUM_WORKER": "4",

"DMLC_ROLE": "worker",

"DMLC_NUM_SERVER": "1",

"SW2V_DATA": "/mnt/dcos/text8",

"DMLC_PS_ROOT_PORT": "18001"

},

"portDefinitions": [

{

"port": 10003,

"protocol": "tcp",

"labels": {}

}

]

}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,076评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,658评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,732评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,493评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,591评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,598评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,601评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,348评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,797评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,114评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,278评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,953评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,585评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,202评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,180评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,139评论 2 352

推荐阅读更多精彩内容