一个有意思的R小函数-sweep

刘小泽写于19.7.17
哇,一转眼好多天没更新啦,不行不行要向隔壁花花学习。如果你不知道花花是谁,请关注我们的公众号“生信星球”
今天学习到了一个函数sweep

前言

对数据框、矩阵的行或列批量进行计算可能会使用apply函数,这一点我们也是经常使用的,举个例子:我们想计算一个矩阵的行、列均值

> test <- matrix(1:12,ncol = 4,byrow = T)
> test
     [,1] [,2] [,3] [,4]
[1,]    1    2    3    4
[2,]    5    6    7    8
[3,]    9   10   11   12
> colmean <- apply(test, 2, mean)
> colmean
[1] 5 6 7 8
> rowmean <- apply(test,1, mean)
> rowmean
[1]  2.5  6.5 10.5

对行或列进行操作,只需要指定1或者2即可,至于对它们做什么嘛,除了使用现成的统计函数,如mean以外,其实还有更复杂的公式可以用,只要你能想出来

testfun<-function(x){
m=1
for (i in x){m=m*i}
return(m)
}
# 它的目的就是为了计算所有数的乘积

然后apply操作一下

> multest <- apply(test, 2, testfun)
> multest
[1]  45 120 231 384

从上面可以看到,apply实现的,不管function中间过程多么复杂,它最后都是对某个数值进行操作,或者对行/列进行一个统一的操作

那么,如果是想对行/列进行不同操作呢?比如,对每一列增加不同的数值,使用apply是不是还要用到循环呢?略显麻烦

sweep登场

R语言是很强大的,可以在apply的统一操作基础上,增加个性化服务(比如对每行/列使用不同的数值进行计算,而且可以指定计算方法)

例如,想要将1-3行分别减去对应的行号1-3,就可以这样:

> sweep(test,1,c(1,2,3),"-")
     [,1] [,2] [,3] [,4]
[1,]    0    1    2    3
[2,]    3    4    5    6
[3,]    6    7    8    9
  • 第一个位置test这里需要是矩阵或数据框;
  • 第二个位置12选一个,原理和apply一样
  • 第三个位置是要操作的向量,如果要对行操作,那么这个向量长度就要和行数一样
  • 第四个位置是计算符,比如:+ - * / < >

怎样利用sweep进行矩阵的标准化?

基因表达矩阵中的基因表达量差异有时会很大,如果直接使用可能会造成这种情况:画的热图发生只有某个点颜色很深,表达量很高,而其他的差异都被"盖住了"

因此需要进行标准化,例如用z-score:(表达量-均值)/标准差

# 行为基因,列为样本,现在对基因进行标准化
standardize <- function(x) {
rowmean <- apply(x, 1, mean)
rowsd <- apply(x, 1, sd)  
rv <- sweep(x, 1, rowmean,"-")  #表达量-均值
rv <- sweep(rv, 1, rowsd, "/")  #再除以标准差
return(rv)
}

设定一个模拟数据

> test <- as.data.frame(test)
> colnames(test) <- paste0("sample",1:4)
> rownames(test) <- paste0("gene",1:3)
> test
      sample1 sample2 sample3 sample4
gene1       1       2       3       4
gene2       5       6       7       8
gene3       9      10      11      12
# 使用设定好的函数
> standardize(test)
        sample1    sample2   sample3  sample4
gene1 -1.161895 -0.3872983 0.3872983 1.161895
gene2 -1.161895 -0.3872983 0.3872983 1.161895
gene3 -1.161895 -0.3872983 0.3872983 1.161895

然后用内置函数做一下看看

> t(scale(t(test),scale=T))
        sample1    sample2   sample3  sample4
gene1 -1.161895 -0.3872983 0.3872983 1.161895
gene2 -1.161895 -0.3872983 0.3872983 1.161895
gene3 -1.161895 -0.3872983 0.3872983 1.161895

这里要注意的是scale函数是对列进行操作的,因此对基因表达量进行标准化,就要先转置,最后转回来

可以看到和我们设定的函数结果一致,从另一个方面说明scale函数也是应用的z-score进行的标准化

结尾

如果脑海中有一个公式的话,可以说,apply完成了值的获得,sweep完成了符号的运算


欢迎关注我们的公众号~_~  
我们是两个农转生信的小硕,打造生信星球,想让它成为一个不拽术语、通俗易懂的生信知识平台。需要帮助或提出意见请后台留言或发送邮件到jieandze1314@gmail.com

Welcome to our bioinfoplanet!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 226,488评论 6 524
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 97,466评论 3 411
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 174,084评论 0 371
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 62,024评论 1 305
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,882评论 6 405
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 54,395评论 1 318
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 42,539评论 3 433
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 41,670评论 0 282
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 48,194评论 1 329
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 40,173评论 3 352
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 42,302评论 1 362
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,872评论 5 354
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 43,581评论 3 342
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,984评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 35,179评论 1 278
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,888评论 3 385
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 47,306评论 2 369

推荐阅读更多精彩内容