flume

                                            Flume

一、flume的背景

    hadoop使用flume的整体开发流程:

        


    从Hadoop的业务开发流程图可以看出,在大数据的业务处理过程中,数据采集是十分重要的一步,也是不可少的一步。

许多公司的平台每天会产生大量的日志(一般为流式数据,如:搜索引擎的pv、查询等),处理这些日志需要特定的日志系统,一般而言,这些系统需要具备以下几点:

    1.构建应用系统和分系统的桥梁,并将它们进行关联解耦;

    2.支持近实时的在线分析和类似于hadoop之类的离线分析系统;

    3.具有高扩展性,即:当数据量增加时,可以通过增加节点进行水平扩展。

常见的开源日志系统,如:Facebook的scribe,Apache的chukwa,linedin的kafka,cloudera的flume等。

二、Flume的简介

    flume作为cloudera开发的实时日志采集系统,受到业界的认可和广泛的应用。Flume初始的发行版本目前被称为Flume OG(original generation),属于cloudera。

    但随着 FLume 功能的扩展,Flume OG 代码工程臃肿、核心组件设计不合理、核心配置不标准等缺点暴露出来,尤其是在 Flume OG 的最后一个发行版本 0.9.4. 中,日

志传输不稳定的现象尤为严重,为了解决这些问题,2011 年 10 月 22 号,cloudera 完成了 Flume-728,对 Flume 进行了里程碑式的改动:重构核心组件、核心配置以

及代码架构,重构后的版本统称为 Flume NG(next generation);改动的另一原因是将 Flume 纳入 apache 旗下,cloudera Flume 改名为 Apache Flume。

Flume是Apache的顶级项目,官方网站:http://flume.apache.org/

 Flume是一个分布式、可靠、高可用的海量日志聚合系统,支持在系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据的简单处理,并写到各种数据接收方的能力。

Flume 在0.9.x and 1.x之间有较大的架构调整,1.x版本之后的改称Flume NG,0.9.x的称为Flume OG。

  Flume目前只有Linux系统的启动脚本,没有Windows环境的启动脚本。

    3.1 Flume的特点

    flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输系统。支持在日志系统中定制各类数据发送方,用于收集数据;同时,flume提供对数据进行简单处理,并写到各种数据接收方,如(文本、hdfs、hbase的)的能力。

    flume的数据流由事件(Event)贯穿始终。事件是flume的基本数据单位,他携带日志数据(字节数据形式)兵器携带有头信息,这些event信息有agent外部的source生成,当source捕获时间后会进行特定的格式化,然后source会把事件推入(单个或者多个)channel中。可以把channel理解为一个缓冲区,它将保存事件直到sink处理完该事件,sink负责持久化日志或者把事件推向另一个source。

        1.flume的可靠性

        当节点出现故障时,日志能够被传送到其他节点上而不丢失。flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据的agent首先将event写到磁盘是上,当数据传送成功后,再删除;如果数据 发送失败,可以重新发送。)store on failure (也是scribe的策略,当数据接收crash时,将数据写入到本地,待回复后,继续发送),Besteffort(数据发送到接收方后,不会进行确认)。

        2.flume的可恢复性

            使用channel,使用filechannel把数据持久化到本地当中。

3.2 Flume的一些核心概念

  Client:Client生产数据,运行在一个独立的线程。

Event: 一个数据单元,消息头和消息体组成。(Events可以是日志记录、 avro 对象等。)

Flow: Event从源点到达目的点的迁移的抽象。

Agent: 一个独立的Flume进程,包含组件Source、 Channel、 Sink。(Agent使用JVM 运行Flume。每台机器运行一个agent,但是可以在一个agent中包含

多个sources和sinks。)

Source: 数据收集组件。(source从Client收集数据,传递给Channel)

Channel: 中转Event的一个临时存储,保存由Source组件传递过来的Event。(Channel连接 sources 和 sinks ,这个有点像一个队列。)

Sink: 从Channel中读取并移除Event, 将Event传递到FlowPipeline中的下一个Agent(如果有的话)(Sink从Channel收集数据,运行在一个独立线程。)

3.3 Flume NG的体系结构

 Flume 运行的核心是 Agent。Flume以agent为最小的独立运行单位。一个agent就是一个JVM。它是一个完整的数据收集工具,含有三个核心组件,分别是

 source、 channel、 sink。通过这些组件, Event 可以从一个地方流向另一个地方,如下图所示。

3.4 Source

  Source是数据的收集端,负责将数据捕获后进行特殊的格式化,将数据封装到事件(event) 里,然后将事件推入Channel中。

  Flume提供了各种source的实现,包括Avro Source、Exce Source、Spooling Directory Source、NetCat Source、Syslog Source、Syslog TCP Source、Syslog UDP Source、HTTP Source、HDFS Source,etc。如果内置的Source无法满足需要, Flume还支持自定义Source。


3.5 Channel

  Channel是连接Source和Sink的组件,大家可以将它看做一个数据的缓冲区(数据队列),它可以将事件暂存到内存中也可以持久化到本地磁盘上, 直到Sink处理完该事件。

Flume对于Channel,则提供了Memory Channel、JDBC Chanel、File Channel,etc。

  MemoryChannel可以实现高速的吞吐,但是无法保证数据的完整性。

  MemoryRecoverChannel在官方文档的建议上已经建义使用FileChannel来替换。

  FileChannel保证数据的完整性与一致性。在具体配置不现的FileChannel时,建议FileChannel设置的目录和程序日志文件保存的目录设成不同的磁盘,以便提高效率。

3.6 Sink

  Flume Sink取出Channel中的数据,进行相应的存储文件系统,数据库,或者提交到远程服务器。

  Flume也提供了各种sink的实现,包括HDFS sink、Logger sink、Avro sink、File Roll sink、Null sink、HBase sink,etc。

  Flume Sink在设置存储数据时,可以向文件系统中,数据库中,hadoop中储数据,在日志数据较少时,可以将数据存储在文件系中,并且设定一定的时间间隔保存数据。在日志数据较多时,可以将相应的日志数据存储到Hadoop中,便于日后进行相应的数据分析。

四、Flume的部署类型

4.1 单一流程


4.2 多代理流程(多个agent顺序连接)

可以将多个Agent顺序连接起来,将最初的数据源经过收集,存储到最终的存储系统中。这是最简单的情况,一般情况下,应该控制这种顺序连接的Agent的数量,因为数据流经的路径变长了,如果不考虑failover的话,出现故障将影响整个Flow上的Agent收集服务。 

4.3 流的合并(多个Agent的数据汇聚到同一个Agent )

这种情况应用的场景比较多,比如要收集Web网站的用户行为日志,Web网站为了可用性使用的负载集群模式,每个节点都产生用户行为日志,可以为每 个节点都配置一个Agent来单独收集日志数据,然后多个Agent将数据最终汇聚到一个用来存储数据存储系统,如HDFS上。

4.4 多路复用流(多级流)

Flume还支持多级流,什么多级流?来举个例子,当syslog,java,nginx、tomcat等混合在一起的日志流开始流入一个agent后,可以agent中将混杂的日志流分开,然后给每种日志建立一个自己的传输通道。

4.5 load balance功能

下图Agent1是一个路由节点,负责将Channel暂存的Event均衡到对应的多个Sink组件上,而每个Sink组件分别连接到一个独立的Agent上 。

五、Flume的安装

5.1 Flume的下载

下载地址:

http://mirrors.hust.edu.cn/apache/

http://flume.apache.org/download.html

5.2 Flume的安装

  Flume框架对hadoop和zookeeper的依赖只是在jar包上,并不要求flume启动时必须将hadoop和zookeeper服务也启动。

(1)将安装包上传到服务器并解压

[hadoop@hadoop1 ~]$tar -zxvf apache-flume-1.8.0-bin.tar.gz -C apps/

(2)创建软连接

[hadoop@hadoop1 ~]$ln -s apache-flume-1.8.0-bin/ flume

(3)修改配置文件

/home/hadoop/apps/apache-flume-1.8.0-bin/conf

[hadoop@hadoop1 conf]$cp flume-env.sh.template flume-env.sh


(4)配置环境变量

[hadoop@hadoop1 conf]$vi ~/.bashrc

#FLUME

export FLUME_HOME=/home/hadoop/apps/flume

export PATH=$PATH:$FLUME_HOME/bin

保存使其立即生效

[hadoop@hadoop1 conf]$source ~/.bashrc

(5)查看版本

[hadoop@hadoop1 ~]$flume-ng version

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,290评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,107评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,872评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,415评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,453评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,784评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,927评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,691评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,137评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,472评论 2 326
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,622评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,289评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,887评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,741评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,977评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,316评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,490评论 2 348

推荐阅读更多精彩内容