Monocle2拟时分析演示

单细胞之轨迹分析-2:monocle2 原理解读+实操 - 简书 (jianshu.com)
跟着Cell学单细胞转录组分析(九):Monocle2拟时分析演示(上) - 简书 (jianshu.com)

加载R包,构建拟时分析文件

if (!requireNamespace("BiocManager", quietly = TRUE))
  install.packages("BiocManager")
BiocManager::install("monocle")
library(monocle)#monocle构建CDS需要3个矩阵:expr.matrix、pd、featuredata
sample_ann <-  Macro@meta.data 
#构建featuredata,一般featuredata需要两个col,一个是gene_id,一个是gene_short_name,row对应counts的rownames
gene_ann <- data.frame(gene_short_name = rownames(Macro@assays$RNA),
                       row.names =  rownames(Macro@assays$RNA))
#head(gene_ann)
pd <- new("AnnotatedDataFrame",data=sample_ann)
fd <- new("AnnotatedDataFrame",data=gene_ann)
#构建matrix
ct=as.data.frame(Macro@assays$RNA@counts)#单细胞counts矩阵

有了matrix,pd,fd,就可以构建monocle对象,进行预处理。

#构建monocle对象
sc_cds <- newCellDataSet(
  as.matrix(ct), 
  phenoData = pd,
  featureData =fd,
  expressionFamily = negbinomial.size(),
  lowerDetectionLimit=1)
sc_cds <- detectGenes(sc_cds, min_expr = 1) 
sc_cds <- sc_cds[fData(sc_cds)$num_cells_expressed > 10, ]
cds <- sc_cds
cds <- estimateSizeFactors(cds)
cds <- estimateDispersions(cds)

基因筛选

disp_table <- dispersionTable(cds)
unsup_clustering_genes <- subset(disp_table, mean_expression >= 0.1)
cds <- setOrderingFilter(cds, unsup_clustering_genes$gene_id)
plot_ordering_genes(cds) 
plot_pc_variance_explained(cds, return_all = F)
image.png

数据降维

cds <- reduceDimension(cds, max_components = 2, num_dim = 20,
                       reduction_method = 'tSNE', verbose = T)
cds <- clusterCells(cds, num_clusters = 5) 
plot_cell_clusters(cds, 1, 2 )
table(pData(cds)$Cluster) 
colnames(pData(cds))

将拟时与seurat分群对应,并挑选显著性基因可视化

table(pData(cds)$Cluster)
table(pData(cds)$Cluster,pData(cds)$celltype)
pData(cds)$Cluster=pData(cds)$celltype
diff_test_res <- differentialGeneTest(cds, fullModelFormulaStr = "~Cluster")
sig_genes <- subset(diff_test_res, qval < 0.1)
sig_genes=sig_genes[order(sig_genes$pval),]
head(sig_genes[,c("gene_short_name", "pval", "qval")] ) 
cg=as.character(head(sig_genes$gene_short_name)) 
#  挑选差异最显著的基因可视化
plot_genes_jitter(cds[cg,],
                  grouping = "Cluster",
                  color_by = "Cluster",
                  nrow= 3,
                  ncol = NULL )
cg2=as.character(tail(sig_genes$gene_short_name)) 
plot_genes_jitter(cds[cg2,],
                  grouping = "Cluster",
                  color_by = "Cluster",
                  nrow= 3,
                  ncol = NULL )
image.png

前面差异基因筛选后,开始拟时推测

# 第一步: 挑选合适的基因
ordering_genes <- row.names (subset(diff_test_res, qval < 0.01))
ordering_genes
cds <- setOrderingFilter(cds, ordering_genes)
plot_ordering_genes(cds)
#第二步降维
cds <- reduceDimension(cds, max_components = 2,
                       method = 'DDRTree')
                       
# 第三步: 对细胞进行排序
cds <- orderCells(cds)
#可视化细胞分化轨迹
plot_cell_trajectory(cds, color_by = "Cluster")
image.png

可视化基因时序图

plot_genes_in_pseudotime(cds[cg,],
                         color_by = "Cluster")
image.png

保存拟时cds文件,这将是后期可视化的基础

可视化

跟着Cell学单细胞转录组分析(十):Monocle2拟时分析演示之结果可视化(下) - 简书 (jianshu.com)

先做一个细胞群的谱系分化图。从这个图可以看出我们关注的细胞分化轨迹

library(ggsci)
plot_cell_trajectory(cds, color_by = "Cluster")  + scale_color_nejm()
image.png
plot_cell_trajectory(cds, color_by = "State")  + scale_color_npg()

image.png

plot_cell_trajectory(cds, color_by = "Pseudotime")
image.png

如果细胞轨迹全部在一起,很难看出不同细胞状态在分支上的位置,这时,我们可以将每个状态单独画出来,看起来比较清晰

plot_cell_trajectory(cds, color_by = "State") +
  facet_wrap(~State, nrow = 1)

image.png

处理细胞谱系拟时可视化,我们还关注分化轨迹过程中基因的情况。选定关注的基因,看看其在拟时中的表达
pData(cds)$TGFBR2 = log2( exprs(cds)['TGFBR2',]+1)
image.png

通过拟时基因表达模式聚类

cds$id <- rownames(cds)
library(dplyr)
cds %>% arrange(qval) %>% head(10) %>% select(id) -> gene_to_cluster
gene_to_cluster <- gene_to_cluster$id
my_pseudotime_cluster <- plot_pseudotime_heatmap(cds[gene_to_cluster,],
                                                 num_clusters = 3,
                                                 cores = 8,
                                                 show_rownames = TRUE)
image.png

BEAM进行统计分析

BEAM_res <- BEAM(my_cds_subset, branch_point = 1, cores = 8)
BEAM_res <- BEAM_res[order(BEAM_res$qval),]
BEAM_res <- BEAM_res[,c("gene_short_name", "pval", "qval")]
head(BEAM_res)
table(BEAM_res$qval < 1e-4)
plot_genes_branched_heatmap(my_cds_subset[row.names(subset(BEAM_res, qval < 1e-4)),],
                            branch_point = 1,
                            num_clusters = 4,
                            cores = 8,
                            use_gene_short_name = TRUE,
                            show_rownames = TRUE)
image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容