3.最常用的排序-快速排序

上一节的冒泡排序可以说是我们学习的第一个真正的排序算法,并且解决了桶排序浪费空间的问题,但在算法的执行效率上却牺牲了很多,它的时间复杂度达到了 O(N²)。假如我们的计算机每秒钟可以运行 10 亿次,那么对 1 亿个数进行排序,桶排序只需要 0.1 秒,而冒泡排序则需要 1 千万秒,达到 115 天之久,是不是很吓人?那有没有既不浪费空间又可以快一点的排序算法呢?那就是“快速排序”啦!光 这个名字是不是就觉得很高端呢?

<br />假设我们现在对“6 1 2 7 9 3 4 5 10 8”这10个数进行排序。首先在这个序列中随便找一个数作为基准数(不要被这个名词吓到了,这就是一个用来参照的数,待会儿你就知道它用来做啥了)。为了方便,就让第一个数 6 作为基准数吧。接下来,需要将这个序列中所有比基准数大的数放在 6 的右边,比基准数小的数放在 6 的左边,类似下面这种排列。

3 1 2 5 4 <b>6</b> 9 7 10 8

在初始状态下,数字 6 在序列的第 1 位。我们的目标是将 6 挪到序列中间的某个位置,假设这个位置是 k。现在就需要寻找这个 k,并且以第 k 位为分界点,左边的数都小于等于 6,右边的数都大于等于 6。想一想,你有办法可以做到这点吗?
<br />给你一个提示吧。请回忆一下冒泡排序是如何通过“交换”一步步让每个数归位的。此时你也可以通过“交换”的方法来达到目的。具体是如何一步步交换呢?怎样交换才既方便又节省时间呢?先别急着往下看,拿出笔来,在纸上画画看。我高中时第一次学习冒泡排序算法的时候,就觉得冒泡排序很浪费时间,每次都只能对相邻的两个数进行比较,这显然太不合理了。于是我就想了一个办法,后来才知道原来这就是“快速排序”,请允许我小小地自恋一下(o)。
<br />方法其实很简单:分别从初始序列“6 1 2 7 9 3 4 5 10 8”两端开始“探测”。先从右往左找一个小于 6 的数,再从左往右找一个大于 6 的数,然后交换它们。这里可以用两个变量 i 和 j,分别指向序列最左边和最右边。我们为这两个变量起个好 的名字“哨兵 i”和“哨兵 j”。刚开始的时候让哨兵 i 指向序列的最左边(即 i=1),指向数字 6。让哨兵 j 指向序列的最右边(即 j=10),指向数字 8。

Paste_Image.png

<br />首先哨兵 j 开始出动。因为此处设置的基准数是最左边的数,所以需要让哨兵 j 先出动,这一点非常重要(请自己想一想为什么)。哨兵 j 一步一步地向左挪动(即 j ),直到找到一个小于 6 的数停下来。接下来哨兵 i 再一步一步向右挪动(即 i++),直到找到一个大于 6的数停下来。最后哨兵 j 停在了数字 5 面前,哨兵 i 停在了数字 7 面前。

Paste_Image.png

现在交换哨兵 i 和哨兵 j 所指向的元素的值。交换之后的序列如下。

6 1 2 <b>5</b> 9 3 4 <b>7</b> 10 8

<br />到此,第一次交换结束。接下来哨兵 j 继续向左挪动(再次友情提醒,每次必须是哨兵j 先出发)。他发现了 4(比基准数 6 要小,满足要求)之后停了下来。哨兵 i 也继续向右挪动,他发现了 9(比基准数 6 要大,满足要求)之后停了下来。此时再次进行交换,交换之后的序列如下。

6 1 2 5 <b>4</b> 3 <b>9</b> 7 10 8

Paste_Image.png

<br />第二次交换结束,“探测”继续。哨兵 j 继续向左挪动,他发现了 3(比基准数 6 要小,满足要求)之后又停了下来。哨兵 i 继续向右移动,糟啦!此时哨兵 i 和哨兵 j 相遇了,哨兵 i 和哨兵 j 都走到 3 面前。说明此时“探测”结束。我们将基准数 6 和 3 进行交换。交换之后的序列如下。

<b>3</b> 1 2 5 4 <b>6</b> 9 7 10 8

Paste_Image.png

到此第一轮“探测”真正结束。此时以基准数 6 为分界点,6 左边的数都小于等于 6,6右边的数都大于等于 6。回顾一下刚才的过程,其实哨兵 j 的使命就是要找小于基准数的数,而哨兵 i 的使命就是要找大于基准数的数,直到 i 和 j 碰头为止。
<br />OK,解释完毕。现在基准数 6 已经归位,它正好处在序列的第 6 位。此时我们已经将原来的序列,以6为分界点拆分成了两个序列,左边的序列是“3 1 2 5 4”,右边的序列是“9 7 10 8”。接下来还需要分别处理这两个序列,因为6左边和右边的序列目前都还是很混乱的。不过不要紧,我们已经掌握了方法,接下来只要模拟刚才的方法分别处理 6 左边和右边的序列即可。现在先来处理 6 左边的序列吧。
<br />左边的序列是“3 1 2 5 4”。请将这个序列以3为基准数进行调整,使得3左边的数都小于等于 3,3 右边的数都大于等于 3。好了开始动笔吧。

如果你模拟得没有错,调整完毕之后的序列的顺序应该是:

2 1 <b>3</b> 5 4

OK,现在3已经归位。接下来需要处理3左边的序列“2 1”和右边的序列“5 4”。对序列“2 1”以 2 为基准数进行调整,处理完毕之后的序列为“1 2”,到此 2 已经归位。序列“1”只有一个数,也不需要进行任何处理。至此我们对序列“2 1”已全部处理完毕,得到的序列是“1 2”。序列“5 4”的处理也仿照此方法,最后得到的序列如下。

1 2 3 4 5 6 9 7 10 8

对于序列“9 7 10 8”也模拟刚才的过程,直到不可拆分出新的子序列为止。最终将会得到这样的序列:

1 2 3 4 5 6 7 8 9 10

到此,排序完全结束。细心的同学可能已经发现,快速排序的每一轮处理其实就是将这一轮的基准数归位,直到所有的数都归位为止,排序就结束了。下面上个霸气的图来描述下整个算法的处理过程。

Paste_Image.png

快速排序之所以比较快,是因为相比冒泡排序,每次交换是跳跃式的。每次排序的时候设置一个基准点,将小于等于基准点的数全部放到基准点的左边,将大于等于基准点的数全部放到基准点的右边。这样在每次交换的时候就不会像冒泡排序一样只能在相邻的数之间进行交换,交换的距离就大得多了。因此总的比较和交换次数就少了,速度自然就提高了。当然在最坏的情况下,仍可能是相邻的两个数进行了交换。因此快速排序的最差时间复杂度和冒泡排序是一样的,都是 O(N²),它的平均时间复杂度为 O (NlogN)。其实快速排序是基于一种叫做“二分”的思想。我们后面还会遇到“二分”思想,到时候再聊。先上代码,如下。

// 快速排序

#include <stdio.h>

// 定义两个全局变量, 这两个变量要在子函数中使用
int a[101], n;

void quicksort(int left, int right){

    int i, j, t, temp;
    
    if (left > right) {
        return;
    }
    
    temp = a[left]; // temp 中存的就是基准数
    i=left;
    j=right;
    while (i!=j) {
        
        // 顺序很重要, 要先从右往左找
        while (a[j]>=temp && i<j) {
            j--;
        }
        
        // 再从左往右找
        while (a[i]<=temp && i<j) {
            i++;
        }
        
        // 交换两个数在数组中的位置
        if (i<j) {      // 当哨兵 i 和哨兵 j 没有相遇时
            
            t = a[i];
            a[i] = a[j];
            a[j] = t;
        }
    }
    
    // 最终将基准数归位
    a[left] = a[i];
    a[i] = temp;
    
    quicksort(left,i-1);    // 继续处理左边的, 这里是一个递归的过程.
    quicksort(i+1, right);  // 继续处理右边的, 这里是一个递归的过程.
    
}

int main(){

    int i, j, t;
    // 读入数据
    scanf("%d",&n);
    for (i=0; i<n; i++) {
        scanf("%d",&a[i]);
    }
    
    // 快速排序调用
    quicksort(0,n-1);
    
    // 输出排序后的结果
    for (i=0; i<n; i++) {
        printf("%d ",a[i]);
    }
    
    printf("\n");
    
    return 0;
}

可以输入以下数据进行验证。

10
6 1 2 7 9 3 4 5 10 8

运行结果是:

1 2 3 4 5 6 7 8 9 10

下面是程序执行过程中数组 a 的变化过程,加粗的数表示的是已归位的基准数。

6 1 2 7 9 3 4 5 10 8
3 1 2 5 4 <b>6</b> 9 7 10 8
2 1 <b>3</b> 5 4 6 9 7 10 8
1 <b>2</b> 3 5 4 6 9 7 10 8
<b>1</b> 2 3 5 4 6 9 7 10 8
1 2 3 4 <b>5</b> 6 9 7 10 8
1 2 3 <b>4</b> 5 6 9 7 10 8
1 2 3 4 5 6 8 7 <b>9</b> 10
1 2 3 4 5 6 7 <b>8</b> 9 10
1 2 3 4 5 6 <b>7</b> 8 9 10
1 2 3 4 5 6 7 8 9 <b>10</b>

快速排序由 C. A. R. Hoare(东尼·霍尔,Charles Antony Richard Hoare)在 1960 年提出,之后又有许多人做了进一步的优化。如果你对快速排序感兴趣,可以去看看东尼·霍尔1962 年在 Computer Journal 发表的论文“Quicksort”以及《算法导论》的第七章。快速排序算法仅仅是东尼·霍尔在计算机领域才能的第一次显露,后来他受到了老板的赏识和重用,公司希望他为新机器设计一种新的高级语言。你要知道当时还没有 PASCAL 或者 C 语言这些高级的东东。后来东尼·霍尔参加了由 Edsger Wybe Dijkstra(1972 年图灵奖得主,这个大神我们后面还会遇到的,到时候再细聊)举办的 ALGOL 60 培训班,他觉得自己与其没有把握地去设计一种新的语言,还不如对现有的 ALGOL 60 进行改进,使之能在公司的新机器上使用。于是他便设计了 ALGOL 60 的一个子集版 。这个版 在执行效率和可靠性上都在当时 ALGOL 60 的各种版 中首屈一指,因此东尼·霍尔受到了国际学术界的重视。后来他在 ALGOL X 的设计中还发明了大家熟知的 case 语句,也被各种高级语言广泛采用,比如PASCAL、C、Java 语言等等。当然,东尼·霍尔在计算机领域的贡献还有很多很多,他在1980 年获得了图灵奖。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,602评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,442评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,878评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,306评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,330评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,071评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,382评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,006评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,512评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,965评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,094评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,732评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,283评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,286评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,512评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,536评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,828评论 2 345

推荐阅读更多精彩内容