Image Emotion Computing(3)

参考文献

lists details ( Author - Title - Journal / Conference )
[1] D. Borth, R. Ji, T. Chen, T. Breuel, and S.-F. Chang. Large-scale visual sentiment ontology and detectors using adjective noun pairs. In ACM International Conference on Multimedia, pages 223–232, 2013.
[2] T. Chen, F. X. Yu, J. Chen, Y. Cui, Y.-Y. Chen, and S.-F. Chang. Object-based visual sentiment concept analysis and application. In ACM International Conference on Multimedia, pages 367–376, 2014.
[3] R. G. Collingwood. The principles of art, volume 62. Oxford University Press, USA, 1958.
[4] E. S. Dan-Glauser and K. R. Scherer. The geneva affective picture database (gaped): a new 730-picture database focusing on valence and normative significance. Behavior Research Methods, 43(2):468–477, 2011.
[5] Y. Gao, F. Wang, H. Luan, and T.-S. Chua. Brand data gathering from live social media streams. In ACM International Conference on Multimedia Retrieval, page 169, 2014.
[6] Y. Gao, M. Wang, D. Tao, R. Ji, and Q. Dai. 3-d object retrieval and recognition with hypergraph analysis. IEEE Transactions on Image Processing, 21(9):4290–4303, 2012.
[7] Y. Gao, S. Zhao, Y. Yang, and T.-S. Chua. Multimedia social event detection in microblog. In International Conference on Multimedia Modeling, pages 269–281, 2015.
[8] A. Hanjalic. Extracting moods from pictures and sounds: Towards truly personalized tv. IEEE Signal Processing Magazine, 23(2):90–100, 2006.
[9] A. Hanjalic and L.-Q. Xu. Affective video content representation and modeling. IEEE Transactions on Multimedia, 7(1):143–154, 2005.
[10] J. Hobbs, R. Salome, and K. Vieth. The visual experience. Davis Publications, 1995.
[11] J. Jia, S. Wu, X. Wang, P. Hu, L. Cai, and J. Tang. Can we understand van gogh’s mood? learning to infer affects from images in social networks. In ACM International Conference on Multimedia, pages 857–860, 2012.
[12] D. Joshi, R. Datta, E. Fedorovskaya, Q.-T. Luong, J. Z. Wang, J. Li, and J. Luo. Aesthetics and emotions in images. IEEE Signal Processing Magazine, 28(5):94–115, 2011.
[13] P. Lang, M. Bradley, B. Cuthbert, et al. International affective picture system (IAPS): Affective ratings of pictures and instruction manual. NIMH, Center for the Study of Emotion & Attention, 2005.
[14] B. Li, W. Xiong, W. Hu, and X. Ding. Context-aware affective images classification based on bilayer sparse representation. In ACM International Conference on Multimedia, pages 721–724, 2012.
[15] X. Lu, P. Suryanarayan, R. B. Adams Jr, J. Li, M. G. Newman, and J. Z. Wang. On shape and the computability of emotions. In ACM International Conference on Multimedia, pages 229–238, 2012.
[16] J. Machajdik and A. Hanbury. Affective image classification using features inspired by psychology and art theory. In ACM International Conference on Multimedia, pages 83–92, 2010.
[17] Q. Mao, M. Dong, Z. Huang, and Y. Zhan. Learning salient features for speech emotion recognition using convolutional neural networks. IEEE Transactions on Multimedia, 16(8):2203–2213, 2014.
[18] J. A. Mikels, B. L. Fredrickson, G. R. Larkin, C. M. Lindberg, S. J. Maglio, and P. A. Reuter-Lorenz. Emotional category data on images from the international affective picture system. Behavior Research Methods, 37(4):626–630, 2005.
[19] B. Pang and L. Lee. Opinion mining and sentiment analysis. Information Retrieval, 2(1-2):1–135, 2008.
[20] K.-C. Peng, A. Sadovnik, A. Gallagher, and T. Chen. A mixed bag of emotions: Model, predict, and transfer emotion distributions. In IEEE Conference on Computer Vision and Pattern Recognition, pages 860–868, 2015.
[21] S. Siersdorfer, E. Minack, F. Deng, and J. Hare. Analyzing and predicting sentiment of images on the social web. In ACM International Conference on Multimedia, pages 715–718, 2010.
[22] M. Solli and R. Lenz. Color based bags-of-emotions. In Computer Analysis of Images and Patterns, pages 573–580, 2009.
[23] J. Tang, Y. Zhang, J. Sun, J. Rao, W. Yu, Y. Chen, and A. C. M. Fong. Quantitative study of individual emotional states in social networks. IEEE Transactions on Affective Computing, 3(2):132–144, 2012.
[24] P. Verduyn and S. Lavrijsen. Which emotions last longest and why: The role of event importance and rumination. Motivation and Emotion, 39(1):119–127, 2015.
[25] S. Wang and Q. Ji. Video affective content analysis: a survey of state of the art methods. IEEE Transactions on Affective Computing, 6(4):410–430, 2015.
[26] W.-n. Wang, Y.-l. Yu, and S.-m. Jiang. Image retrieval by emotional semantics: A study of emotional space and feature extraction. In IEEE International Conference on Systems, Man and Cybernetics, pages 3534–3539, 2006.
[27] A. B. Warriner, V. Kuperman, and M. Brysbaert. Norms of valence, arousal, and dominance for 13,915 english lemmas. Behavior research methods, 45(4):1191–1207, 2013.
[28] Y. Yang, P. Cui, W. Zhu, and S. Yang. User interest and social influence based emotion prediction for individuals. In ACM International Conference on Multimedia, pages 785–788, 2013.
[29] Y. Yang, P. Cui, W. Zhu, H. V. Zhao, Y. Shi, and S. Yang. Emotionally representative image discovery for social events. In ACM International Conference on Multimedia Retrieval, page 177, 2014.
[30] Y. Yang, J. Jia, S. Zhang, B. Wu, Q. Chen, J. Li, C. Xing, and J. Tang. How do your friends on social media disclose your emotions? In AAAI Conference on Artificial Intelligence, pages 306–312, 2014.
[31] Y.-H. Yang and H. H. Chen. Machine recognition of music emotion: A review. ACM Transactions on Intelligent Systems and Technology, 3(3):40, 2012.
[32] V. Yanulevskaya, J. Van Gemert, K. Roth, A.-K. Herbold, N. Sebe, and J.-M. Geusebroek. Emotional valence categorization using holistic image features. In IEEE International Conference on Image Processing, pages 101–104, 2008.
[33] J. Yuan, S. Mcdonough, Q. You, and J. Luo. Sentribute: image sentiment analysis from a mid-level perspective. In ACM International Workshop on Issues of Sentiment Discovery and Opinion Mining, page 10, 2013.
[34] H. Zhang, X. Shang, H. Luan, M. Wang, and T.-S. Chua. Learning from collective intelligence: Feature learning using social images and tags. ACM Transactions on Multimedia Computing, Communications and Applications, 2016.
[35] S. Zhao, Y. Gao, X. Jiang, H. Yao, T.-S. Chua, and X. Sun. Exploring principles-of-art features for image emotion recognition. In ACM International Conference on Multimedia, pages 47–56, 2014.
[36] S. Zhao, H. Yao, Y. Gao, R. Ji, W. Xie, X. Jiang, and T.-S. Chua. Predicting personalized emotion perceptions of social images. In ACM International Conference on Multimedia, 2016.
[37] S. Zhao, H. Yao, and X. Jiang. Predicting continuous probability distribution of image emotions in valence-arousal space. In ACM International Conference on Multimedia, pages 879–882, 2015.
[38] S. Zhao, H. Yao, X. Jiang, and X. Sun. Predicting discrete probability distribution of image emotions. In IEEE International Conference on Image Processing, pages 2459–2463, 2015.
[39] S. Zhao, H. Yao, and X. Sun. Video classification and recommendation based on affective analysis of viewers. Neurocomputing, 119:101–110, 2013.
[40] S. Zhao, H. Yao, X. Sun, X. Jiang, and P. Xu. Flexible presentation of videos based on affective content analysis. In International Conference on Multimedia Modeling, pages 368–379. 2013.
[41] S. Zhao, H. Yao, X. Sun, P. Xu, X. Liu, and R. Ji. Video indexing and recommendation based on affective analysis of viewers. In ACM International Conference on Multimedia, pages 1473–1476, 2011.
[42] S. Zhao, H. Yao, F. Wang, X. Jiang, and W. Zhang. Emotion based image musicalization. In IEEE International Conference on Multimedia & Expo Workshops, pages 1–6, 2014.
[43] S. Zhao, H. Yao, Y. Yang, and Y. Zhang. Affective image retrieval via multi-graph learning. In ACM International Conference on Multimedia, pages 1025–1028, 2014.
[44] D. Zhou, J. Huang, and B. Schölkopf. Learning with hypergraphs: Clustering, classification, and embedding. In Advances in Neural Information Processing Systems, pages 1601–1608, 2006.

原文链接: //www.greatytc.com/p/5cc0924e9124

转载请注明出处

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,366评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,521评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,689评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,925评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,942评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,727评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,447评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,349评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,820评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,990评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,127评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,812评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,471评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,017评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,142评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,388评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,066评论 2 355

推荐阅读更多精彩内容