rosalind题目答案(自用参考版)

rosalind是一个生信学习网站(网址为[http://rosalind.info/problems/list-view/]),上面有许多生物信息相关的题目,用python解决它。这些代码是我个人学习时写的,也有些是在网上看到的(比如生信技能树,简书等)。每道题可能有多种解法,我以#1,#2,#3表示。(注意一下代码对齐问题)
rosalind程序问题解决

1. Counting DNA Nucleotides 碱基记数

``` python
#!/usr/bin/env python3
# counting  DNA nucleotides##1
cnts = {c:0 for c in 'ATCG'}
for line in open("dna nuclear.txt",'r'):
  for c in line.rstrip():
    cnts[c] += 1
print(cnts)
#2
with open('dna nuclear.txt', 'r') as f:
    data = f.read().strip('\n')
    #count() 方法用于统计字符串里某个字符出现的次数。
    #str.count(sub, start= 0,end=len(string))
    list = ([data.count(c) for c in 'ACGT'])
    for i in list: 
        print(i, end= " ")
#3 用字典的方法

dic={}  
with open('dna nuclear.txt', 'r') as f:
    data = f.read().strip('\n')
    for base in data:
        # get() 函数返回指定键的值,如果值不在字典中返回默认值。
        # dict.get(key, default=None)
        dic[base]=1+ dic.get(base,0) 

   for key in sorted(dic.keys()):
        print(dic[key], end =" ")
```

2.Transcribing DNA into RNA 将DNA转为RNA。

(即用"U"替换"T")

#1
with open('rosalind_rna.txt', 'r') as f:
    data = f.read().strip('\n')
print(data.replace("T", "U"))
#2
with open('rosalind_rna.txt','r') as f:
   for line in f:
      line = line.upper()
      RnaSeq = re.sub('T','U',line.rstrip())
   print(RnaSeq)

3.Complementing a Strand of DNA DNA互补链

#1
##利用大小写的不同,非常巧妙!!!
 with open('rosalind_revc.txt', 'r') as f:
    data = f.read().strip('\n')
    st = data.replace('A', 't').replace('T', 'a').replace('C', 'g').replace('G', 'c').upper()[::-1]
    print(st)
#2
trans = {'A':'T','T':'A','G':'C','C':'G'}
with open('rosalind_revc.txt','r') as f:
  for line in f:
    seq = ''
    line = line.upper()
    for aa in line.rstrip():
      seq += trans.get(aa)
     print(seq[::-1])
#3
def reverse_complement(seq):
  ntComplement = {'A':'T','T':'A','G':'C','C':'G'}
  RevSeqList = list(reversed(seq))
  RevComSeqList = [ntComplement[k] for k in RevSeqList]
  RevComSeq = ''.join(RevComSeqList)
  return RevComSeq

seq = ''
with open('rosalind_revc.txt','r') as f:
  for line in f:
    line = line.upper()
print (reverse_complement(line.rstrip()))

4. Rabbits and Recurrence Relations 兔子问题,斐波那契数列的一点改变

递归函数的使用

n=input("n is:\r") #公式为Fn = Fn-1 + k * Fn-2
k=input("k is:\r") #\n代表换行
fn =[1,1];
bool_list=[1,1,0];
for i in range(2,int(n)):
    if(bool_list[i]==0):
        fn.append(fn[i-1]+int(k)*fn[i-2])
        bool_list[i]=1
        bool_list.append(0)
        i+=1;
    else:
        bool_list.append(0)
        i+=1;
print(fn[int(n)-1])

5.Computing GC Content fasta文件中GC含量最大的序列

## 1 
import re
Seq = {}
seqGC = {}
with open('./test.fa','r') as f:
        for line in f:
                if re.match(">",line):
                        SeqName = line[1:]
                        Seq[SeqName] = ''
                        seqGC[SeqName] = 0
                else:
                        line = line.upper()
                        line = line.rstrip()
                        Seq[SeqName] += line
                        seqGC[SeqName] += line.count('G')
                        seqGC[SeqName] += line.count('C')
maxGC = 0
for key , value in Seq.items():
        if maxGC < float(seqGC[key]/ len(value)*100):
                maxGC = float(seqGC[key] / len(value)*100)
                tmp = key
print ('>'+tmp+Seq[tmp])
print (tmp)
print(float(maxGC))
## 2
from operator import itemgetter
from collections import OrderedDict
SeqTest = OrderedDict()
GcContent = OrderedDict()
with open('./test.fa','r') as f:
        for line in f:
                line = line.rstrip()
                if line.startswith('>'):
                        SeqName = line[1:]
                        SeqTest[SeqName] = ''
                        continue
                SeqTest[SeqName] += line.upper()

for key, value in SeqTest.items():
        totalLength = len(value)
        gcNum = value.count('G') + value.count('C')
        gcContent[key] = float(gcNum/totalLength)*100
sortedGC = sorted(gcContent.items(),key = itemgetter(1))
largeName = sortedGC[-1][0]
largeGCcontent = sortedGC[-1][1]
print ('most GC ratio rate is %s and it is %s ' %(largeName,largeGCContent))

6.Counting Point Mutations 计算点突变数目

## 1
fh = open('rosalind_hamm.txt','r')
lst = []
for line in fh:
        lst.append(line.rstrip())
hamming_dis = 0
for i in range(len(lst[0])):
        if lst[0][i] == lst[1][i]:
                continue
        hamming_dis += 1
print (hamming_dis)
## 2
fh = open('rosalind_hamm.txt','r')
seq = file.readlines()
seq1, seq2 = seq[0].strip(), seq[1].strip()
mutation = [i for i in range(len(seq1)) if seq1[i] != seq2[i]]
print (len(mutation))

7.Mendel's First Law 孟德尔第一定理

一个群体中有三种基因型的生物:k,显性纯合子;m,杂合子;n,隐性纯合子。假设这对形状由一对等位基因控制,且群体中随机选取的任何两个个体都能交配,求随机选取两个个体交配后,子代拥有显性等位基因的概率。

## 1
k =22
m = 25
n = 16

num = int(k + m + n)
choice = num*(num-1)/2.0
p = 1 - (n*(n-1)/2 + 0.25*m*(m-1)/2 + m*n*0.5)/choice
print(p)
## 2
from scipy.misc import comb
num = input("Number of individuals(k,m,n): ")
[k,m,n] = map(int,num.split(','))
t = k + m + n
rr = comb(n,2)/comb(t,2)
hh = comb(m,2)/comb(t,2)
hr = comb(n,1)*comb(m,1)/comb(t,2)

p = 1 - (rr+hh*1/4+hr*1/2)
print(p)

8. Translating RNA into Protein 将RNA翻译成蛋白质

def translate_rna(sequence):
    codonTable = {
    'AUA':'I', 'AUC':'I', 'AUU':'I', 'AUG':'M',
    'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACU':'T',
    'AAC':'N', 'AAU':'N', 'AAA':'K', 'AAG':'K',
    'AGC':'S', 'AGU':'S', 'AGA':'R', 'AGG':'R',
    'CUA':'L', 'CUC':'L', 'CUG':'L', 'CUU':'L',
    'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCU':'P',
    'CAC':'H', 'CAU':'H', 'CAA':'Q', 'CAG':'Q',
    'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGU':'R',
    'GUA':'V', 'GUC':'V', 'GUG':'V', 'GUU':'V',
    'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCU':'A',
    'GAC':'D', 'GAU':'D', 'GAA':'E', 'GAG':'E',
    'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGU':'G',
    'UCA':'S', 'UCC':'S', 'UCG':'S', 'UCU':'S',
    'UUC':'F', 'UUU':'F', 'UUA':'L', 'UUG':'L',
    'UAC':'Y', 'UAU':'Y', 'UAA':'', 'UAG':'',
    'UGC':'C', 'UGU':'C', 'UGA':'', 'UGG':'W',
    }
    proteinsequence = ''
    for n in range(0,len(sequence),3):
        if sequence[n:n+3] in codonTable.keys():
            proteinsequence += codonTable[sequence[n:n+3]]
    return proteinsequence

protein_fh = open('./protein.txt','w')
with open('./rna.txt','r') as f:
        for line in f:
                protein_fh.write(translate_rna(line.strip('\n')))
## 2
import re
from collections import OrderedDict

codonTable = OrderedDict()
codonTable={
'AUA':'I','AUC':'I','AUU':'I','AUG':'M',
'ACA':'T','ACC':'T','ACG':'T','ACU':'T',
'AAC':'N','AAU':'N','AAA':'K','AAG':'K',
'AGC':'S','AGU':'S','AGA':'R','AGG':'R',
'CUA':'L','CUC':'L','CUG':'L','CUU':'L',
'CCA':'P','CCC':'P','CCG':'P','CCU':'P',
'CAC':'H','CAU':'H','CAA':'Q','CAG':'Q',
'CGA':'R','CGC':'R','CGG':'R','CGU':'R',
'GUA':'V','GUC':'V','GUG':'V','GUU':'V',
'GCA':'A','GCC':'A','GCG':'A','GCU':'A',
'GAC':'D','GAU':'D','GAA':'E','GAG':'E',
'GGA':'G','GGC':'G','GGG':'G','GGU':'G',
'UCA':'S','UCC':'S','UCG':'S','UCU':'S',
'UUC':'F','UUU':'F','UUA':'L','UUG':'L',
'UAC':'Y','UAU':'Y','UAA':'','UAG':'',
'UGC':'C','UGU':'C','UGA':'','UGG':'W',
}

rnaseq = ''
with open('./rna.txt','r') as f:
        for line in f:
                line = line.rstrip()
                line += line.upper()

aminoAcids = []
i = 0
while i < len(rnaseq):
        condon = rnaseq[i:i+3]
        if codonTable[condon] != '':
                aminoAcids.append(codonTable[condon])
        i += 3

peptide = ''.join(aminoAcids)
print(peptide)
## 3
from Bio.Seq import Seq
from Bio.Alphabet import generic_dna,generic_rna

# translate
rna = Seq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG", generic_rna)
print(rna.translate())

9. Finding a Motif in DNA 寻找DNA motif

## 1 
seq = 'GATATATGCATATACTT'
motif = 'ATAT'
motif_len = len(motif)
position = []
for i in range(len(seq)-motif_len):
        if seq[i:i+motif_len] == motif:
                position.append(i+1)
print(position)
## 2
import re
seq = 'GATATATGCATATACTT'
print([i.start()+1 for i in re.finditer('(?=ATAT)',seq)])

10. Consensus and Profile 多个等长序列的一致性序列

比如序列如下:

>Rosalind_1
ATCCAGCT
>Rosalind_2
GGGCAACT
>Rosalind_3
ATGGATCT
>Rosalind_4
AAGCAACC
>Rosalind_5
TTGGAACT
>Rosalind_6
ATGCCATT
>Rosalind_7
ATGGCACT

各位点碱基个数:

A   5 1 0 0 5 5 0 0
C   0 0 1 4 2 0 6 1
G   1 1 6 3 0 1 0 0
T   1 5 0 0 0 1 1 6
Consensus   A T G C A A C T

## 1
def seq_list(fasta):
        seq_list = []
        for line in fasta.readlines():
                if not line.startswith('>'):
                        seq = list(line.rstrip())
                        seq_list.append(seq)
        return seq_list
def statistic_base(seq_list):
        for base in 'ATGC':
                base_total = []
                for sit in range(len(seq_list[0])):
                        col = [x[sit] for x in seq_list]
                        num = col.count(base)
                        base_total.append(num)
                print('%s:%s'%(base,base_total))
fh =  open('./test.fa','r')
sequence_list = seq_list(fh)
statistic_base(sequence_list)
## 2
from collections import Counter
from collections import OrderedDict
seq = OrderedDict()
seqLength = 0
fh = open('./test.consensus.txt','wt')

with open('./test.fa','r') as f:
        for line in f:
                if line.startswith('>'):
                        seq_name = line.rstrip()
                        seq[seq_name] = ''
                        continue
                seq[seq_name] += line.upper().rstrip()
        seqLength = len(seq[seq_name])

a,t,g,c = [],[],[],[]
consensus = ''
for i in range(seqLength):
        sequence = ''
        for j in seq.keys():
                sequence += seq[j][i]
        a.append(sequence.count('A'))
        t.append(sequence.count('T'))
        g.append(sequence.count('G'))
        c.append(sequence.count('C'))
        counts = Counter(sequence)
        consensus += counts.most_common()[0][0]
fh.write(consensus+'\n')
fh.write('\n'.join(['A:\t'+'\t'.join(map(str,a)),'C:\t'+'\t'.join(map(str,c)),'G:\t'+'\t'.join(map(str,g)),'T:\t'+'\t'.join(map(str,t))])+'\n')
fh.close()

11. Mortal Fibonacci Rabbits

斐波那契序列是一个序列的数字定义的递归关系Fn = Fn-1+ Fn−2 ,我们设置的起始值F1 = F2 = 1。
假设每只兔子可以活m个月,n个月后有多少只兔子?

## 1
def fib(n,m):
        f= [0,1,1]
        for i in range(3,n+1):
                if i <= m:
                        total = f[i-1] + f[i-2]
                elif i == m+1:
                        total = f[i-1] + f[i-2] - 1
                else:
                        total = f[i-1] + f[i-2] - f[i-m-1]
                f.append(total)
        return(f[n])

inp = input('live month of rabbit(m),and afther n-th month;n<=100,m<=20;input(n,m): ')
[n,m]=map(int,inp.split(','))

print(fib(n,m))

12. Overlap Graphs Graph Theory

文件介绍好麻烦,自己看:http://rosalind.info/problems/grph/
总之该题有三个碱基的首尾相同就连接起来,
输入文件:

>Rosalind_0498
AAATAAA
>Rosalind_2391
AAATTTT
>Rosalind_2323
TTTTCCC
>Rosalind_0442
AAATCCC
>Rosalind_5013
GGGTGGG

输出结果:

Rosalind_0498 Rosalind_2391
Rosalind_0498 Rosalind_0442
Rosalind_2391 Rosalind_2323

seq = {}
with open('./overlap.fa','r') as f:
        for line in f:
                line = line.rstrip()
                if line.startswith('>'):
                        seqname = line[1:]
                        seq[seqname] = ''
                        continue
                seq[seqname] += line.upper()

for key , value in seq.items():
        for key2 ,value2 in seq.items():
                if key != key2 and value[-3:] == value2[:3]:
                        print(key+'\t'+key2)

13. Calculating Expected Offspring 计算后代的期望值

同样懒得解释原理,具体原理看:http://rosalind.info/problems/iev/
现在有6种基因型组合夫妇:

AA-AA
AA-Aa
AA-aa
Aa-Aa
Aa-aa
aa-aa

给定6个非负整数,代表6种基因型组合的夫妇数量,求下一代显性性状的个数,假设每对夫妻有2个孩子。

def expected(a,b,c,d,f,g):
        AA_AA = 1
        AA_Aa = 1
        AA_aa = 1
        Aa_Aa = 0.75
        Aa_aa = 0.5
        aa_aa = 0
        p = (AA_AA*a + AA_Aa*b + AA_aa*c + Aa_Aa*d + Aa_aa*f + aa_aa*g)*2
        return (p)

inp = input('input(a,b,c,d,f,g): ')
[a,b,c,d,f,g] = map(int,inp.split(','))
print(expected(a,b,c,d,f,g))

14. Finding a Shared Motif

#待填坑
##15\.Independent Alleles 
## 16\. Finding a Protein Motif
##17\.Inferring mRNA from Protein
## 18\.Open Reading Frames 
##19\.Enumerating Gene Orders   
PRTM    Calculating Protein Mass        
         
REVP    Locating Restriction Sites      
         
SPLC    RNA Splicing    
LEXF    Enumerating k-mers Lexicographically        
         
LGIS    Longest Increasing Subsequence      
         
LONG    Genome Assembly as Shortest Superstring     
         
PMCH    Perfect Matchings and RNA Secondary Structures  2053    
         
PPER    Partial Permutations    2886    
         
PROB    Introduction to Random Strings  2821    
         
SIGN    Enumerating Oriented Gene Orderings 2924    
         
SSEQ    Finding a Spliced Motif 3123    
         
TRAN    Transitions and Transversions   2988    
         
TREE    Completing a Tree   2561    
         
CAT Catalan Numbers and RNA Secondary Structures    866 
         
CORR    Error Correction in Reads   1411    
         
INOD    Counting Phylogenetic Ancestors 1901    
         
KMER    k-Mer Composition   2135    
         
KMP Speeding Up Motif Finding   1714    
         
LCSQ    Finding a Shared Spliced Motif  1468    
         
LEXV    Ordering Strings of Varying Length Lexicographically

LCSQ    Finding a Shared Spliced Motif  1468    
         
LEXV    Ordering Strings of Varying Length Lexicographically    2393    
         
MMCH    Maximum Matchings and RNA Secondary Structures  1044    
         
PDST    Creating a Distance Matrix  1543    
         
REAR    Reversal Distance   767 
         
RSTR    Matching Random Motifs  1174    
         
SSET    Counting Subsets    1808    
         
ASPC    Introduction to Alternative Splicing    1142    
         
EDIT    Edit Distance   1097    
         
EVAL    Expected Number of Restriction Sites    892 
         
MOTZ    Motzkin Numbers and RNA Secondary Structures    560 
         
NWCK    Distances in Trees  699 
         
SCSP    Interleaving Two Motifs 676 
         
SETO    Introduction to Set Operations  1440    
         
SORT    Sorting by Reversals    588 
         
SPEC    Inferring Protein from Spectrum 1120    
         
TRIE    Introduction to Pattern Matching    868 
         
CONV    Comparing Spectra with the Spectral Convolution 722 
         
CTBL    Creating a Character Table  404 
         
DBRU    Constructing a De Bruijn Graph  738 
         
EDTA    Edit Distance Alignment 716 
         
FULL    Inferring Peptide from Full Spectrum    508 
         
INDC    Independent Segregation of Chromosomes  582 
         
ITWV    Finding Disjoint Motifs in a Gene   274 
         
LREP    Finding the Longest Multiple Repeat 400 
         
NKEW    Newick Format with Edge Weights 436 
         
RNAS    Wobble Bonding and RNA Secondary Structures 395 
         
AFRQ    Counting Disease Carriers   494 
         
CSTR    Creating a Character Table from Genetic Strings 257 
         
CTEA    Counting Optimal Alignments
| UNR | [Counting Unrooted Binary Trees](http://rosalind.info/problems/cunr/) | [251](http://rosalind.info/problems/cunr/recent/) |  |   |   |   |
| GLOB | [Global Alignment with Scoring Matrix](http://rosalind.info/problems/glob/) | [510](http://rosalind.info/problems/glob/recent/) |  |   |   |   |
| PCOV | [Genome Assembly with Perfect Coverage](http://rosalind.info/problems/pcov/) | [528](http://rosalind.info/problems/pcov/recent/) |  |   |   |   |
| PRSM | [Matching a Spectrum to a Protein](http://rosalind.info/problems/prsm/) | [390](http://rosalind.info/problems/prsm/recent/) |  |   |   |   |
| QRT | [Quartets](http://rosalind.info/problems/qrt/) | [208](http://rosalind.info/problems/qrt/recent/) |  |   |   |   |
| SGRA | [Using the Spectrum Graph to Infer Peptides](http://rosalind.info/problems/sgra/) | [336](http://rosalind.info/problems/sgra/recent/) |  |   |   |   |
| SUFF | [Encoding Suffix Trees](http://rosalind.info/problems/suff/) | [289](http://rosalind.info/problems/suff/recent/) |  |   |   |   |
| CHBP | [Character-Based Phylogeny](http://rosalind.info/problems/chbp/) | [139](http://rosalind.info/problems/chbp/recent/) |  |   |   |   |
| CNTQ | [Counting Quartets](http://rosalind.info/problems/cntq/) | [147](http://rosalind.info/problems/cntq/recent/) |  |   |   |   |
| EUBT | [Enumerating Unrooted Binary Trees](http://rosalind.info/problems/eubt/) | [135](http://rosalind.info/problems/eubt/recent/) |  |   |   |   |
| GASM | [Genome Assembly Using Reads](http://rosalind.info/problems/gasm/) | [289](http://rosalind.info/problems/gasm/recent/) |  |   |   |   |
| GCON | [Global Alignment with Constant Gap Penalty](http://rosalind.info/problems/gcon/) | [331](http://rosalind.info/problems/gcon/recent/) |  |   |   |   |
| LING | [Linguistic Complexity of a Genome](http://rosalind.info/problems/ling/) | [174](http://rosalind.info/problems/ling/recent/) |  |   |   |   |
| LOCA | [Local Alignment with Scoring Matrix](http://rosalind.info/problems/loca/) | [344](http://rosalind.info/problems/loca/recent/) |  |   |   |   |
| MEND | [Inferring Genotype from a Pedigree](http://rosalind.info/problems/mend/) | [225](http://rosalind.info/problems/mend/recent/) |  |   |   |   |
| MGAP | [Maximizing the Gap Symbols of an Optimal Alignment](http://rosalind.info/problems/mgap/) | [182](http://rosalind.info/problems/mgap/recent/) |  |   |   |   |
| MREP | [Identifying Maximal Repeats](http://rosalind.info/problems/mrep/) | [155](http://rosalind.info/problems/mrep/recent/) |  |   |   |   |
| MULT | [Multiple Alignment](http://rosalind.info/problems/mult/) | [185](http://rosalind.info/problems/mult/recent/) |  |   |   |   |
| PDPL | [Creating a Restriction Map](http://rosalind.info/problems/pdpl/) | [203](http://rosalind.info/problems/pdpl/recent/) |  |   |   |   |
| ROOT | [Counting Rooted Binary Trees](http://rosalind.info/problems/root/) | [215](http://rosalind.info/problems/root/recent/) |  |   |   |   |
| SEXL | [Sex-Linked Inheritance](http://rosalind.info/problems/sexl/) | [378](http://rosalind.info/problems/sexl/recent/) |  |   |   |   |
| SPTD | [Phylogeny Comparison with Split Distance](http://rosalind.info/problems/sptd/) | [152](http://rosalind.info/problems/sptd/recent/) |  |   |   |   |
| WFMD | [The Wright-Fisher Model of Genetic Drift](http://rosalind.info/problems/wfmd/) | [297](http://rosalind.info/problems/wfmd/recent/) |  |   |   |   |
| ALPH | [Alignment-Based Phylogeny](http://rosalind.info/problems/alph/) | [100](http://rosalind.info/problems/alph/recent/) |  |   |   |   |
| ASMQ | [Assessing Assembly Quality with N50 and N75](http://rosalind.info/problems/asmq/) | [230](http://rosalind.info/problems/asmq/recent/) |  |   |   |   |
| CSET | [Fixing an Inconsistent Character Set](http://rosalind.info/problems/cset/) | [115](http://rosalind.info/problems/cset/recent/) |  |   |   |   |
| EBIN | [Wright-Fisher's Expected Behavior](http://rosalind.info/problems/ebin/) | [248](http://rosalind.info/problems/ebin/recent/) |  |   |   |   |
| FOUN | [The Founder Effect and Genetic Drift](http://rosalind.info/problems/foun/) | [233](http://rosalind.info/problems/foun/recent/) |  |   |   |   |
| GAFF | [Global Alignment with Scoring Matrix and Affine Gap Penalty](http://rosalind.info/problems/gaff/) | [277](http://rosalind.info/problems/gaff/recent/) |  |   |   |   |
| GREP | [Genome Assembly with Perfect Coverage and Repeats](http://rosalind.info/problems/grep/) | [176](http://rosalind.info/problems/grep/recent/) |  |   |   |   |
| OAP | [Overlap Alignment](http://rosalind.info/problems/oap/) | [155](http://rosalind.info/problems/oap/recent/) |  |   |   |   |
| QRTD | [Quartet Distance](http://rosalind.info/problems/qrtd/) | [73](http://rosalind.info/problems/qrtd/recent/) |  |   |   |   |
| SIMS | [Finding a Motif with Modifications](http://rosalind.info/problems/sims/) | [191](http://rosalind.info/problems/sims/recent/) |  |   |   |   |
| SMGB | [Semiglobal Alignment](http://rosalind.info/problems/smgb/) | [159](http://rosalind.info/problems/smgb/recent/) |  |   |   |   |
| KSIM | [Finding All Similar Motifs](http://rosalind.info/problems/ksim/) | [68](http://rosalind.info/problems/ksim/recent/) |  |   |   |   |
| LAFF | [Local Alignment with Affine Gap Penalty](http://rosalind.info/problems/laff/) | [162](http://rosalind.info/problems/laff/recent/) |  |   |   |   |
| OSYM | [Isolating Symbols in Alignments](http://rosalind.info/problems/osym/) | [114](http://rosalind.info/problems/osym/recent/) |  |   |   |   |
| RSUB | [Identifying Reversing Substitutions](http://rosalind.info/problems/rsub/) |
~~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容