音频重采样实现原理

在声纹识别中,为了满足对不同采样率的要求,常需要对语音进行重采样。重采样即将原始的采样频率变换为新的采样频率以适应不同采样率的要求。实现重采样的传统方法有三种:一是若原模拟信号x(t)可以再生,或是已记录下来,那么可以进行重新采样;二是将x(n)通过数模转换D/A变成模拟信号x(t),对x(t)经模数转换A/D在重新采样;三是L/M倍采样率转换算法,对采样后的数字信号x(n),在“数字域”做采样率转换,以得到新的采样率。方法一所处理的情况比较特殊。方法二再一次引入A/D和D/A量化误差。方法三最为理想。

音频重采样主要步骤是进行插值或抽取。由于抽取可能产生混叠,内插可能产生镜像,因此需要在抽取前进行抗混叠滤波,在内插后进行抗镜像滤波。抗混叠滤波和抗镜像滤波都是使用低通滤波器实现。

假设已对音频信号x(n)(1≤n≤N)以频率L进行采样,现在要对他以新的频率M进行采样,L和M都是实数。M可以比L大或者小。如果M>L,那么就是上采样,反之,就为下采样。让y(k)(1≤k≤K)表示重采样后的信号,明显满足关系K=M/L*N。要导出y(k)的一些基本问题必须考虑:(1)需要多少个x(n)采样点去导出一个y(k)的采样点幅值;这便涉及到窗口大小的问题。(2)什么插值函数比较适合与如何估计逼近精度,这涉及到逼近函数的问题。

对于第一个问题,每个音频信号的采样仅仅决定于一些与它邻近的采样值。实际上窗是非常小的,通常仅仅包含几个采样值,以节省计算量和时间要求。第二个问题,内插函数和逼近函数是数学问题。众所周知任意连续函数可以被任意均匀的多项式或三角多项式表示。逼近的精度可以用泰勒级数和原函数的高阶函数来估计。所以理论上可以选择合适的多项式和三角多项式作为音频重采样的插入函数。

matlab中可以采用resample函数实现重采样。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,561评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,218评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,162评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,470评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,550评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,806评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,951评论 3 407
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,712评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,166评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,510评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,643评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,306评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,930评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,745评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,983评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,351评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,509评论 2 348

推荐阅读更多精彩内容