近几天看了一下2019省赛的题目,其他题基本没什么营养。
最后一题还是有难度的,有CF思维题内味儿了.特此记录一下.
题面:
思路:
发现一次操作,整体的和是不变的.观察其前缀和.
a1 a2 a3 -> s1 s2 s3.
观察对a2操作.
s1 变为 s1 + a2 = s2
s2 变为 s2 - 2*a2 +a2 = s1.
s3 不变.
转换成前缀和S后就相当于让你合理安排顺序使得两个相邻的数的差值的最大值最小.显然将其排序可做到这一点.
又发现:对某个点i操作以后相当于si-1 和 si 互换.所以直接排序可行。
最后注意一点,由题意可知Sn是不能参与排序的,所以要特判Sn.
方法:枚举所有i ∈(1,n-1),swap(s[i],s[n-1]),然后跟Sn作差.(swap就可以,其他地方尽量保持有序)
代码:
```
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+5;
#define ll long long
ll sum[maxn];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
for(int i = 1;i<=n;i++)
{
scanf("%lld",&sum[i]);
sum[i]+=sum[i-1]; //求前缀和
}
sort(sum + 1,sum + n);
ll ans = -1;
for(int i = 1;i<=n;i++)
ans = max(ans,abs(sum[i] - sum[i-1]));
//最后一个不能排序,那么枚举,但是同时要保证其他地方的差值尽量变化不大
ll res = -1;
for(int i = 1;i<=n - 2;i++)
{
swap(sum[i],sum[n-1]);
res = max(abs(sum[i] - sum[i-1]),abs(sum[i+1] - sum[i]));
res = max(res,abs(sum[n] - sum[n-1]));
res = max(res,abs(sum[n-1] - sum[n-2]));
ans = min(res,ans);
swap(sum[n-1],sum[i]);
}
printf("%lld\n",ans);
}
return 0;
}
/*
3
3
5 -2 3
*/
/*
#include <algorithm>
#include <cstring>
#include <iostream>
#include <limits.h>
using namespace std;
typedef long long LL;
const int N = 300010;
int n;
LL sum[N], a[N], s0, sn;
bool st[N];
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
scanf("%d", &n);
sum[0] = 0;
for (int i = 1; i <= n; i++)
{
scanf("%lld", &sum[i]);
sum[i] += sum[i - 1];
}
s0 = sum[0], sn = sum[n];
if (s0 > sn)
swap(s0, sn);
sort(sum, sum + n + 1);
for (int i = 0; i <= n; i++)
if (s0 == sum[i])
{
s0 = i;
break;
}
for (int i = n; i >= 0; i--)
if (sn == sum[i])
{
sn = i;
break;
}
memset(st, 0, sizeof st);
int l = 0, r = n;
for (int i = s0; i >= 0; i -= 2)
{
a[l++] = sum[i];
st[i] = true;
}
for (int i = sn; i <= n; i += 2)
{
a[r--] = sum[i];
st[i] = true;
}
for (int i = 0; i <= n; i++)
if (!st[i])
{
a[l++] = sum[i];
}
LL res = 0;
for (int i = 1; i <= n; i++)
res = max(res, abs(a[i] - a[i - 1]));
printf("%d\n", res);
}
return 0;
}
*/
/*
3
5
1 2 3 4 5
4
-1 -5 10 20
7
1 1 3 6 -8 -8 5
5
20
8
*/
```