JeecgBoot 低代码平台快速集成 Spring AI

JeecgBoot 是一款基于代码生成器的低代码开发平台!前后端分离架构 SpringBoot2.x 和 3.x,SpringCloud,Ant Design Vue3,Mybatis-plus,Shiro,JWT,支持微服务。强大的代码生成器让前后端代码一键生成,实现低代码开发!JeecgBoot 引领新的低代码开发模式 (OnlineCoding-> 代码生成器 -> 手工 MERGE), 帮助解决 Java 项目 70% 的重复工作,让开发更多关注业务。既能快速提高效率,节省研发成本,同时又不失灵活性!

JeecgBoot 如何集成 Spring AI

Spring 通过 Spring AI 项目正式启用了 AI(人工智能)生成提示功能。本文将带你了解如何在 Jeecg Boot 应用中集成生成式 AI,以及 Spring AI 如何与模型互动,包含 RAG 功能。

(Retrieval Augmented Generation)检索增强生成(RAG)是一种用于将个人未经训练数据与人工智能模型集成的技术。在 RAG 工作流程中,第一步将文档数据加载到矢量数据库(例如 Redis)中。当收到用户查询时,矢量数据库会检索一组与该查询相似的文档。然后,这些文档数据充当用户问题的上下文,并与用户的查询结合使用生成响应(通常通过 LLM 模型)。

先来看一下最终效果,效果分别是 AI 互动以及 RAG 互动。



集成 Spring AI 在 Jeecg-module-demo 模块的 pom.xml 中,添加如下配置

<dependency>
    <groupid>org.springframework.ai</groupid>
    <artifactid>spring-ai-openai-spring-boot-starter</artifactid>
    <version>1.0.0-M1</version>
</dependency>
<repositories>
    <repository>
        <id>spring-milestones</id>
        <name>Spring Milestones</name>
        <url>https://repo.spring.io/milestone</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
    <repository>
        <id>spring-snapshots</id>
        <name>Spring Snapshots</name>
        <url>https://repo.spring.io/snapshot</url>
        <releases>
            <enabled>false</enabled>
        </releases>
    </repository>
</repositories>

添加配置 Spring AI 提供的 starter 自动配置完成了大部分工作,引入依赖后,只需要再进入如下配置即可

spring:
  ai:
    openai:
      api-key: open-ai-api-key
      base-url: 如非使用代理点,则无需更改

进行以上配置之后,官方默认没有提供 ChatClient 的 bean 注册,所以我们还需要最后一步,注册 ChatClient Bean。

@Bean
public ChatClient chatClient(ChatClient.Builder builder, VectorStore vectorStore) {
    return builder.build();
}

到这里,我们已经可以正常使用 ChatClient、ImageModel 等 API 与 OpenAI 进行互动访问了,如下:

文生文:

chatClient.prompt().user(message).call().content();

文生图:

imageModel.call(new ImagePrompt(description,
                        OpenAiImageOptions.builder().build()));

RAG:

 // 向量库查询
List<document> documents = vectorStore.similaritySearch(query);
String info = "";
if (documents.size() &gt; 0) {
   info = documents.get(0).getContent();
}

// 构造系统prompt
String systemPrompt = "你的名字叫Jeecg AI助手,你的官网在http://jeecg.com,以友好的方式回应,乐于助人、快乐的态度";

// 构造用户prompt
String userPrompt = """
                给你提供一些数据参考: {info},请回答我的问题:{query}
                请你跟进数据参考与工具返回结果回复用户的请求。
                """;

// 构造提示词
Message systemMessage = new SystemMessage(systemPrompt);
PromptTemplate promptTemplate = new PromptTemplate(userPrompt);
Message userMessage = promptTemplate.createMessage(Map.of("info", info, "query", query));
Prompt prompt = new Prompt(List.of(userMessage, systemMessage));

client.prompt(prompt).stream().content();

与 JeecgBoot 集成

经过以上两段配置,已经可以正常与 Spring AI 支持的各个大模型进行 API 调用了,不过也仅仅是停留在代码层面,使用门槛也限制在开发员人层面。

JeecgBoot 在 3.7 版本提供了 AI 对话的页面,不过现在版本的默认实现并不是通过 Spring AI 进行集成的,但是却已经完成了前后端对话通信的框架,接下来只需要使用 Spring AI 替换掉原有的大模型交互即可。

org.jeecg.modules.demo.gpt.service.impl.ChatServiceImpl 这个类的 sendMessage 方法中,将如下代码进行注释,替换上 Spring AI 的 API 调用代码即可。如下

替换成

Flux<string> contents = client.prompt()
                        .user(message)
                        .stream().content().then(“DONE”);

final String id = topicId;
        contents.subscribe(p -&gt; {
            Map<string, string> result = new HashMap&lt;&gt;();
            result.put("content", p);
            try {
                if ("DONE".equals("p")) {
                    sseEmitter.send(SseEmitter.event().id("DONE").data(p), MediaType.TEXT_EVENT_STREAM);
                } else {
                    sseEmitter.send(SseEmitter.event()
                            .id(id)
                            .data(result)
                            .reconnectTime(3000));
                }
            } catch (IOException e) {
                throw new RuntimeException(e);
            }
        });

最终效果如开头所示,如果需要将对话替换成 RAG 对话,只需要将 chatClient 调用更换即可。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容