自定义并更改kafka分区策略与自定义拦截器

分区策略

1.更改分区策略

如何指定分区器?

  • application.properties形式
// 指定自定义分区器
spring.kafka.producer.properties.partitioner.class=com.felix.kafka.producer.CustomizePartitioner
  • 编码形式(部分代码)
public ProducerFactory<Object, Object> kafkaProducerFactory() {
        // 构建配置对象
        Map<String, Object> configurationProperties = kafkaProperties.buildProducerProperties();
        // 更改自定义的分区策略
        // kafka-clients 2.7.1自带RoundRobinPartitioner和UniformStickyPartitioner
        // 也可指定为自定义的分区策略
        configurationProperties.put("partitioner.class","org.apache.kafka.clients.producer.RoundRobinPartitioner");
        ...
}

编码形式进行配置kafka config(完整代码)

import org.springframework.beans.factory.ObjectProvider;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.boot.autoconfigure.kafka.KafkaProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import org.springframework.kafka.support.LoggingProducerListener;
import org.springframework.kafka.support.ProducerListener;
import org.springframework.kafka.support.converter.RecordMessageConverter;

import java.util.Map;

@EnableKafka
@Configuration
public class KafkaTemplateConfig {

    @Autowired
    private KafkaProperties kafkaProperties;

    @Bean
    public KafkaTemplate<?, ?> kafkaTemplate(@Qualifier("defaultFactory") ProducerFactory<Object, Object> kafkaProducerFactory,
                                             ProducerListener<Object, Object> kafkaProducerListener,
                                             ObjectProvider<RecordMessageConverter> messageConverter) {
        KafkaTemplate<Object, Object> kafkaTemplate = new KafkaTemplate<>(kafkaProducerFactory);
        messageConverter.ifUnique(kafkaTemplate::setMessageConverter);
        kafkaTemplate.setProducerListener(kafkaProducerListener);
        kafkaTemplate.setDefaultTopic(kafkaProperties.getTemplate().getDefaultTopic());
        return kafkaTemplate;
    }

    @Bean
    public ProducerListener<Object, Object> kafkaProducerListener() {
        return new LoggingProducerListener<>();
    }

    @Bean(name = "defaultFactory")
    public ProducerFactory<Object, Object> kafkaProducerFactory() {
        // 构建配置对象
        Map<String, Object> configurationProperties = kafkaProperties.buildProducerProperties();
        // 更改自定义的分区策略
        // kafka-clients 2.7.1自带RoundRobinPartitioner和UniformStickyPartitioner
        // 也可指定为自定义的分区策略
       configurationProperties.put("partitioner.class","org.apache.kafka.clients.producer.RoundRobinPartitioner");
        DefaultKafkaProducerFactory<Object, Object> factory = new DefaultKafkaProducerFactory<>(
                configurationProperties);
        String transactionIdPrefix = kafkaProperties.getProducer().getTransactionIdPrefix();
        if (transactionIdPrefix != null) {
            factory.setTransactionIdPrefix(transactionIdPrefix);
        }
        return factory;
    }

}

2.kafka分区器源码示例

Roundrobin源码 (kafka-clients 2.7.1)

import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicInteger;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.utils.Utils;

// kafka-clients-2.7.1
public class RoundRobinPartitioner implements Partitioner {
    private final ConcurrentMap<String, AtomicInteger> topicCounterMap = new ConcurrentHashMap();

    public RoundRobinPartitioner() {
    }

    public void configure(Map<String, ?> configs) {
    }

    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        // 获取topic所有分区 1)
        List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
        int numPartitions = partitions.size();
        // concurrentMap维护了各个topic的计数器(原子整形),计数器自增
        int nextValue = this.nextValue(topic);
        // 获取topic所有可用分区 2)
        List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
        // 可用分区非空
        if (!availablePartitions.isEmpty()) {
            // 取余求得现在消息的分区数
            int part = Utils.toPositive(nextValue) % availablePartitions.size();
            return ((PartitionInfo)availablePartitions.get(part)).partition();
        } else {
            // 无可用分区 3)
            return Utils.toPositive(nextValue) % numPartitions;
        }
    }

    private int nextValue(String topic) {
        //没有该topic,则返回AtomicInteger(0)
        AtomicInteger counter = (AtomicInteger)this.topicCounterMap.computeIfAbsent(topic, (k) -> {
            return new AtomicInteger(0);
        });
        // 原子变量++
        return counter.getAndIncrement();
    }

    public void close() {
    }
}
// 1)    
public List<PartitionInfo> partitionsForTopic(String topic) {
        return (List)this.partitionsByTopic.getOrDefault(topic, Collections.emptyList());
    }

// 2)
public List<PartitionInfo> availablePartitionsForTopic(String topic) {
        return (List)this.availablePartitionsByTopic.getOrDefault(topic, Collections.emptyList());
    }

// 3)
public static int toPositive(int number) {
        return number & 2147483647;
    }

3.自定义分区策略

  1. 仿照RoundRoin或者UniformSticky,写自定义分区器实现Partitioner接口
  2. 依照前文指定自定义分区器

二、自定义拦截器

/**
 * @Author: LiMingshan
 * @Description: Kafka自定义拦截器
 */
@Slf4j
public class countInterceptor implements ProducerInterceptor<String, String> {
    private int numOfSuccess = 0, numOfFailure = 0;

    // 获取配置信息和初始化数据时调用。
    @Override
    public ProducerRecord<String, String> onSend(ProducerRecord<String, String> producerRecord) {
        return new ProducerRecord<String, String>(producerRecord.topic(), producerRecord.partition(), producerRecord.timestamp(),
                producerRecord.key(), producerRecord.value(), producerRecord.headers());
    }

    // 该方法封装进 KafkaProducer.send 方法中,即它运行在用户主线程中。Producer 确保在消息被序列化以及计算分区前调用该方法
    // 疑惑:为什么当我配置多个拦截器,并对kafka配置拦截器链发送消息会报空指针异常?
    @Override
    public void onAcknowledgement(RecordMetadata recordMetadata, Exception e) {
        // 通过异常对成功与失败消息进行统计
        if (null != e) {
            numOfFailure++;
        } else {
            numOfSuccess++;
        }
        log.info("成功发送消息数目: {}", numOfSuccess);
        log.info("失败发送消息数目: {}", numOfFailure);
    }

    // 该方法会在消息从 RecordAccumulator 成功发送到 Kafka Broker 之后,或者在发送过程中失败时调用。
    @Override
    public void close() {

    }

    @Override
    public void configure(Map<String, ?> map) {

    }
}

编码形式添加配置

        configurationProperties.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, "com.roy.something.constant.countInterceptor");

另外:spring.kafka.producer.properties

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 用两张图告诉你,为什么你的 App 会卡顿? - Android - 掘金 Cover 有什么料? 从这篇文章中你...
    hw1212阅读 12,993评论 2 59
  • Kafka常用术语 Broker:Kafka的服务端即Kafka实例,Kafka集群由一个或多个Broker组成,...
    每天晒白牙666阅读 312评论 0 0
  • Kafka常用术语 Broker:Kafka的服务端即Kafka实例,Kafka集群由一个或多个Broker组成,...
    每天晒白牙666阅读 173评论 0 0
  • Kafka常用术语 Broker:Kafka的服务端即Kafka实例,Kafka集群由一个或多个Broker组成,...
    每天晒白牙666阅读 209评论 0 0
  • 表情是什么,我认为表情就是表现出来的情绪。表情可以传达很多信息。高兴了当然就笑了,难过就哭了。两者是相互影响密不可...
    Persistenc_6aea阅读 126,151评论 2 7