相关的类:
- BSONObjectBuilder
- BufBuilder
- SharedBufferAllocator
SharedBufferAllocator 基于 SharedBuffer 提供 Allocator的功能,那么SharedBuffer是如何实现的呢?
首先,我们先看一下SharedBuffer的成员变量:
class SharedBuffer {
// ...
private:
boost::intrusive_ptr<Holder> _holder;
};
能够发现 SharedBuffer 使用了一个指向 Holder 的 boost::intrusive_ptr ,Holder 顾名思义用途是存储,因此我们先看一下Holder 是怎么实现。
Holder 的成员变量如下:
class Holder {
public:
explicit Holder(unsigned initial, size_t capacity)
: _refCount(initial), _capacity(capacity) {
invariant(capacity == _capacity);
}
AtomicWord<unsigned> _refCount;
uint32_t _capacity;
};
Holder 使用AtomicWord<unsigned> _refCount
实现引用计数,使用 uint32_t _capacity
存储空间的长度,此外,指向 Holder 的指针是 boost::intrusive_ptr,因此 Holder 需要实现 intrusive_ptr_add_ref 和 intrusive_ptr_release 两个函数如下:
// these are called automatically by boost::intrusive_ptr
friend void intrusive_ptr_add_ref(Holder* h) {
h->_refCount.fetchAndAdd(1);
}
friend void intrusive_ptr_release(Holder* h) {
if (h->_refCount.subtractAndFetch(1) == 0) {
// We placement new'ed a Holder in takeOwnership above,
// so we must destroy the object here.
h->~Holder();
free(h);
}
}
但是,Holder不是存储一段空间吗,那么存储的空间在哪里呢?Holder 与存储空间相关的函数如下:
char* data() {
return reinterpret_cast<char*>(this + 1);
}
const char* data() const {
return reinterpret_cast<const char*>(this + 1);
}
data()
返回数据使用 this+1
的指针类型转换,为什么可以这样实现?观察到 Holder 的构造方法如下:
static SharedBuffer takeOwnership(void* holderPrefixedData, size_t capacity) {
// Initialize the refcount to 1 so we don't need to increment it in the constructor
// (see private Holder* constructor above).
//
// TODO: Should dassert alignment of holderPrefixedData here if possible.
return SharedBuffer(new (holderPrefixedData) Holder(1U, capacity));
}
可以发现,holderPrefixedData
指向的内存空间除了为Holder实例分配的空间外,还有 capacity 大小的bytes空间。而 this
类型为 Holder
,因此 this + 1
会使得指针偏移 sizeof(Holder)
,从而指向未使用的空间,这样Holder就达到了存储一段空间的目的。
基于Holder,SharedBuffer对外提供创建一个固定大小的Buffer,类似CopyOnWrite的CopyOnRealloc的功能的接口,具体实现如下:
static SharedBuffer allocate(size_t bytes) {
return takeOwnership(mongoMalloc(sizeof(Holder) + bytes), bytes);
}
/**
* Resizes the buffer, copying the current contents.
*
* Like ::realloc() this can be called on a null SharedBuffer.
*
* This method is illegal to call if any other SharedBuffer instances share this buffer since
* they wouldn't be updated and would still try to delete the original buffer.
*/
void realloc(size_t size) {
invariant(!_holder || !_holder->isShared());
const size_t realSize = size + sizeof(Holder);
void* newPtr = mongoRealloc(_holder.get(), realSize);
// Get newPtr into _holder with a ref-count of 1 without touching the current pointee of
// _holder which is now invalid.
auto tmp = SharedBuffer::takeOwnership(newPtr, size);
_holder.detach();
_holder = std::move(tmp._holder);
}
/**
* Resizes the buffer, copying the current contents. If shared, an exclusive copy is made.
*/
void reallocOrCopy(size_t size) {
if (isShared()) {
auto tmp = SharedBuffer::allocate(size);
memcpy(tmp._holder->data(),
_holder->data(),
std::min(size, static_cast<size_t>(_holder->_capacity)));
swap(tmp);
} else if (_holder) {
realloc(size);
} else {
*this = SharedBuffer::allocate(size);
}
}
char* get() const {
return _holder ? _holder->data() : nullptr;
}
总的来说,SharedBuffer提供如下特性:
- 创建一个固定大小的SharedBuffer;
- 修改一个SharedBuffer的大小,如果该SharedBuffer的数据是共享的,则复制一份已有数据到新分配的内存空间上,并指向新分配的内存空间
- 使用Holder和boost::intrusive_ptr确保不会发生内存泄漏
- 复制 SharedBuffer 会使得分配的内存空间的引用计数增加