Adventure电商BI案例分析

本文是对Adventure Works Cycles案例的一个总结,通过现有数据监控商品的线上销售情况,获取最新的商品销售趋势以及区域分布情况,并进行可视化展示,为公司业务优化提供辅助决策。
目录:
-项目背景
-分析目的
-分析过程
-结论与建议

一、项目背景

Adventure Works Cycles,AdventureWorks 示例数据库所基于的虚构公司,是一家大型跨国生产公司。公司生产金属和复合材料的自行车,产品远销北美、欧洲和亚洲市场。销售方式主要有两种,前期主要是分销商模式,为了迎合互联网时代,2019年公司开始通过自有网站获取线上商户,从而进军中国市场。

二、分析目的

2019年12月业务组组长需要向领导汇报2019年11月自行车销售情况,为精细化运营提供数据支持,能精准的定位目标客户群体。

三、分析过程

本文分析的主要框架:
-》数据准备(导入观察数据集)
-》整体销售情况(分析2019.1—2019.11自行车整体销售表现)
-》地域销售分析(分析11月每个区域销售量表现、11月TOP10城市销售量表现)
-》产品销售分析(分析11月类别产品销售量表现、11月细分产品销售量表现)
-》用户行为分析(分析11月用户年龄分布及每个年龄段产品购买喜好、11月男女用户比例及产品购买喜好)
-》销售热品分析(分析11月TOP10产品销量榜、11月TOP10销量增速榜)
数据可视化(PoweiBI连接MySql形成数据可视化报表)

1. 数据准备

(1)数据源

数据来源与表名,基础表存于Mysql数据库, 数据库名:adventure_ods
dw_customer_order 产品销售信息事实表:



ods_customer 每天新增客户信息表:



ods_sales_orders 订单明细表:

dim_date_df 日期维度表:

(2)导入相应的包

import pandas as pd
import numpy as np
import pymysql
import sqlalchemy
pymysql.install_as_MySQLdb()# 为了兼容mysqldb
from sqlalchemy import create_engine

(3)读取源数据

源数据dw_customer_order 产品销售信息事实表

#不同城市,每天产品销售信息
engine = create_engine('mysql://用户名:登陆密码@主机地址:端口号/数据库名?charset=gbk')
gather_customer_order=pd.read_sql_query(sql="select * from dw_customer_order", con=engine)

源数据 ods_customer 每天新增客户信息表

#读取数据库客户信息表
engine = create_engine('mysql://用户名:登陆密码@主机地址:端口号/数据库名?charset=gbk')
df_CUSTOMER=pd.read_sql_query(sql="select customer_key,birth_date,gender,marital_status from ods_customer where create_date < '2019-12-1'", con=engine)

源数据 ods_sales_orders 订单明细表

#读取数据库销售订单表
engine = engine = create_engine('mysql://用户名:登陆密码@主机地址:端口号/数据库名?charset=gbk')
df_sales_orders_11=pd.read_sql_query(sql="select *  from ods_sales_orders where create_date>='2019-11-1' and   create_date<'2019-12-1'", con=engine)

(4)初步了解数据

gather_customer_order (源数据dw_customer_order 产品销售信息事实表)

gather_customer_order.info()

df_CUSTOMER(源数据 ods_customer用户表)

df_CUSTOMER.info()

df_sales_orders_11(源数据 ods_sales_orders)

df_sales_orders_11.info()

2.整体销售情况

源数据dw_customer_order

(1)每月订单数量和销售金额

#增加create_year_month月份字段
gather_customer_order['create_year_month']=gather_customer_order['create_date'].apply(lambda x:x.strftime('%Y-%m'))
#筛选产品类别为自行车的数据
gather_customer_order = gather_customer_order.loc[gather_customer_order['cplb_zw'] == '自行车']
overall_sales_performance = gather_customer_order.groupby('create_year_month').agg({'order_num':'sum','sum_amount':'sum'}).reset_index()
overall_sales_performance.head()

(2)每月自行车销售订单量环比

#求每月自行车销售订单量环比,观察最近一年数据变化趋势
order_num_diff = list(overall_sales_performance.order_num.diff(1)/overall_sales_performance.order_num.shift(1))
order_num_diff.pop(0) #删除列表中第一个元素
order_num_diff.append(0) #将0新增到列表末尾
#将环比转化为DataFrame
overall_sales_performance = pd.concat([overall_sales_performance,pd.DataFrame({'order_num_diff':
                                                                               order_num_diff}).shift(1).fillna(0)],axis=1)
overall_sales_performance

(3)每月自行车销售金额环比

#求每月自行车销售金额环比
sum_amount_diff = list(overall_sales_performance.sum_amount.diff(1)/overall_sales_performance.sum_amount.shift(1))
sum_amount_diff.pop(0) #删除列表中第一个元素
sum_amount_diff.append(0) #将0新增到列表末尾
sum_amount_diff
#将环比转化为DataFrame
overall_sales_performance = pd.concat([overall_sales_performance,pd.DataFrame({'sum_amount_diff':
                                                                               sum_amount_diff}).shift(1).fillna(0)],axis=1)
#销量环比字段名order_diff,销售金额环比字段名amount_diff
#按照日期排序,升序
overall_sales_performance.rename(columns={'order_num_diff':'order_diff','sum_amount_diff':'amount_diff'},inplace=True)
overall_sales_performance = overall_sales_performance.sort_values('create_year_month')
overall_sales_performance.head()

字段注释:

create_year_month:时间,order_num:本月累计销售数量,sum_amount:本月累计销售金额,order_diff:本月销售数量环比,

sum_amount_diff:本月销售金额环比,dw_customer_order:用户订单表

将数据存入数据库:

engine = create_engine('mysql://用户名:登陆密码:端口号/数据库名?charset=gbk')
overall_sales_performance.to_sql('pt_overall_sale_performance_1',con=engine,if_exists='append', index=False)

3.地域销售分析

源数据dw_customer_order

(1)不同区域10月、11月的订单量、销售额

#清洗筛选10月11月数据
gather_customer_order_10_11 = gather_customer_order[gather_customer_order['create_year_month'].isin(['2019-10','2019-11'])]
#按区域、月份分组,订单量求和、销售金额求和
gather_customer_order_10_11_group= gather_customer_order_10_11.groupby(['chinese_territory','create_year_month']).agg({'order_num':'sum','sum_amount':'sum'}).reset_index()
gather_customer_order_10_11_group.head()

(2)不同区域10月11月销售数量、销售金额环比

#将区域存为列表
region_list=gather_customer_order_10_11_group['chinese_territory'].unique()
#pct_change()当前元素与先前元素的相差百分比,求不同区域10月11月环比
order_x = pd.Series([])
amount_x = pd.Series([])
for i in region_list:
    a=gather_customer_order_10_11_group.loc[gather_customer_order_10_11_group['chinese_territory']==i]['order_num'].pct_change()
    b=gather_customer_order_10_11_group.loc[gather_customer_order_10_11_group['chinese_territory']==i]['sum_amount'].pct_change()
    order_x=order_x.append(a)
    amount_x = amount_x.append(b)
gather_customer_order_10_11_group['order_diff']=order_x
gather_customer_order_10_11_group['amount_diff']=amount_x
gather_customer_order_10_11_group.head()

字段注释:

chinese_territory:区域,create_year_month:时间,order_num:区域销售数量,sum_amount:区域销售金额,order_diff:本月销售数量环比,

amount_diff:本月销售金额环比

将数据存入数据库:

engine = create_engine('mysql://用户名:登陆密码:端口号/数据库名?charset=gbk')
gather_customer_order_10_11_group.to_sql('pt_overall_sale_performance_2',con=engine,if_exists='append', index=False)

(3)11月自行车销售数量前十城市

#筛选11月自行车交易数据
gather_customer_order_11 = gather_customer_order[gather_customer_order['create_year_month']=='2019-11']
#按城市分组
gather_customer_order_city_11= gather_customer_order_11.groupby('chinese_city').agg({'order_num':'sum'}).reset_index()
#11月自行车销售数量前十城市
gather_customer_order_city_head = gather_customer_order_city_11.sort_values(by='order_num',ascending=False).reset_index(drop=True).head(10)
gather_customer_order_city_head

(4)销售数量前十城市的销售数量和销售金额

#筛选销售前十城市,10月11月自行车销售数据
gather_customer_order_10_11_head = gather_customer_order_10_11[gather_customer_order_10_11['chinese_city'].isin(gather_customer_order_city_head['chinese_city'])]
#分组计算前十城市,自行车销售数量销售金额
gather_customer_order_city_10_11 = gather_customer_order_10_11_head.groupby(['chinese_city','create_year_month']).agg({'order_num':'sum','sum_amount':'sum'}).reset_index()
gather_customer_order_city_10_11

(5)销售数量前十城市的销售数量及销售金额环比

#计算前十城市环比
city_top_list = list(gather_customer_order_city_10_11['chinese_city'].unique())
order_top_x = pd.Series([])
amount_top_x = pd.Series([])
for i in city_top_list:
    #print(i)
    a=gather_customer_order_city_10_11.loc[gather_customer_order_city_10_11['chinese_city']==i]['order_num'].pct_change()
    b=gather_customer_order_city_10_11.loc[gather_customer_order_city_10_11['chinese_city']==i]['sum_amount'].pct_change()
    order_top_x=order_top_x.append(a)
    amount_top_x =amount_top_x.append(b)
#order_diff销售数量环比,amount_diff销售金额环比
gather_customer_order_city_10_11['order_diff']=order_top_x.fillna(0)
gather_customer_order_city_10_11['amount_diff']=amount_top_x.fillna(0)
gather_customer_order_city_10_11.head(5)

字段注释:

chinese_city:城市,create_year_month:时间,order_num:本月销售数量,sum_amount:本月销售金额,order_diff:本月销售数量环比,

amount_diff:本月销售金额环比

将数据存入数据库:

#存入数据库
engine = create_engine('mysql://用户名:登陆密码:端口号/数据库名?charset=gbk')
gather_customer_order_city_10_11.to_sql('pt_bicy_november_october_city_3',con=engine,if_exists='append', index=False)

4.产品销售分析

源数据dw_customer_order

(1)自行车销量/自行车每月销量占比

求每个月自行车累计销售数量

gather_customer_order_group_month = gather_customer_order.groupby('create_year_month').order_num.sum().reset_index()
gather_customer_order_group_month.head()

合并自行车销售信息表+自行车每月累计销售数量表

order_num_proportion = pd.merge(gather_customer_order, gather_customer_order_group_month, on='create_year_month')
order_num_proportion = pd.merge(gather_customer_order, gather_customer_order_group_month, on='create_year_month')
order_num_proportion

计算自行车销量/自行车每月销量占比

order_num_proportion['order_proportion'] = order_num_proportion['order_num_x']/order_num_proportion['order_num_y']
#重命名sum_month_order:自行车每月销售量
order_num_proportion = order_num_proportion.rename(columns={'order_num_y':'sum_month_order'})
order_num_proportion.head()

字段注释:

create_date:时间, product_name:产品名, cpzl_zw:产品类别, cplb_zw:产品大类, order_num_x:产品当天销售数量,customer_num:当天用户购买人数,

sum_amount:产品当天销售金额, chinese_province:省份, chinese_city:城市, chinese_territory:区域,create_year_month:月份,

sum_month_order:本月累计销量, order_proportion:产品销量占比

将每月自行车销售信息存入数据库:

engine = create_engine('mysql://用户名:登陆密码:端口号/数据库名?charset=gbk') order_num_proportion.to_sql('pt_bicycle_product_sales_month_4',con=engine,if_exists='append', index=False)

(2)公路/山地/旅游自行车细分市场表现

查看自行车产品子类

gather_customer_order['cpzl_zw'].drop_duplicates()
公路自行车细分市场销量表现

公路自行车不同型号产品销售数量

gather_customer_order_road = gather_customer_order[gather_customer_order['cpzl_zw'] == '公路自行车']
#求公路自行车不同型号产品销售数量
gather_customer_order_road_month = gather_customer_order_road.groupby(by = ['create_year_month','product_name']).order_num.sum().reset_index()
#增加一列
gather_customer_order_road_month['cpzl_zw'] = '公路自行车'
gather_customer_order_road_month

每个月公路自行车累计销售数量

gather_customer_order_road_month_sum = gather_customer_order_road_month.groupby('create_year_month').agg({'order_num':'sum'}).reset_index()
gather_customer_order_road_month_sum.head()

合并公路自行车gather_customer_order_road_month与每月累计销售数量
用于计算不同型号产品的占比

gather_customer_order_road_month = pd.merge(left=gather_customer_order_road_month,
                                            right=gather_customer_order_road_month_sum,
                                            how='outer',
                                            on='create_year_month')
山地自行车细分市场销量表现

与公路自行车处理过程一致
山地自行车不同型号产品销售数量

gather_customer_order_Mountain = gather_customer_order[gather_customer_order['cpzl_zw'] == '山地自行车']
#求山地自行车不同型号产品销售数量
gather_customer_order_Mountain_month = gather_customer_order_Mountain.groupby(by=['create_year_month','product_name']).agg({'order_num':'sum'}).reset_index()
#增加一列
gather_customer_order_Mountain_month['cpzl_zw'] = '山地自行车'
gather_customer_order_Mountain_month

每个月山地自行车累计销售数量

gather_customer_order_Mountain_month_sum = gather_customer_order_Mountain.groupby('create_year_month').agg({'order_num':'sum'})

合并山地自行车hz_customer_order_Mountain_month与每月累计销售数量
用于计算不同型号产品的占比

gather_customer_order_Mountain_month = pd.merge(left=gather_customer_order_Mountain_month,
                                                right=gather_customer_order_Mountain_month_sum,
                                                how='outer',
                                                on='create_year_month')
gather_customer_order_Mountain_month
旅游自行车细分市场销量表现

与公路、山地自行车处理过程一致
旅游自行车不同型号产品销售数量

gather_customer_order_tour = gather_customer_order[gather_customer_order['cpzl_zw'] == '旅游自行车']
#求旅游自行车不同型号产品销售数量
gather_customer_order_tour_month = gather_customer_order_tour.groupby(by=['create_year_month','product_name']).agg({'order_num':'sum'}).reset_index()
#增加一列
gather_customer_order_tour_month['cpzl_zw'] = '旅游自行车'
gather_customer_order_tour_month

计算不同型号产品的占比

gather_customer_order_tour_month_sum = gather_customer_order_tour_month.groupby('create_year_month').agg({'order_num':'sum'}).reset_index()
gather_customer_order_tour_month = pd.merge(left=gather_customer_order_tour_month,
                                            right=gather_customer_order_tour_month_sum,
                                            how='outer',
                                            on='create_year_month')
gather_customer_order_tour_month

(3)各类自行车的销售量占每月自行车总销售量比率

#将山地自行车、旅游自行车、公路自行车每月销量信息合并
gather_customer_order_month = pd.concat([gather_customer_order_road_month,gather_customer_order_Mountain_month,gather_customer_order_tour_month]).reset_index(drop=True)
#各类自行车,销售量占每月自行车总销售量比率
gather_customer_order_month['order_num_proportio'] = gather_customer_order_month['order_num_x']/gather_customer_order_month['order_num_y']
#gather_customer_order_month中的order_num_x(当月产品累积销量)修改字段名为order_month_product, order_num_y(当月自行车总销量)修改字段名为sum_order_month
#order_month_product当月产品累计销量
#sum_order_month当月自行车总销量
gather_customer_order_month.rename(columns={'order_num_x':'order_month_product','order_num_y':'sum_order_month'},inplace=True)
gather_customer_order_month

字段注释:

create_year_month:时间,product_name:产品名,order_month_product:本月产品累计销量,sum_order_month:当月自行车总销量,

order_num_proportio:本月产品销量占比

将数据存入数据库:

engine = create_engine('mysql://用户名:登陆密码:端口号/数据库名?charset=gbk')
#gather_customer_order_month.to_sql('pt_bicycle_product_sales_order_month_4',con=engine,if_exists='append', index=False)

(4)计算2019年11月自行车环比

#计算11月环比,先筛选10月11月数据
gather_customer_order_month_10_11 = gather_customer_order_month[gather_customer_order_month.create_year_month.isin(['2019-10','2019-11'])]
#排序。将10月11月自行车销售信息排序
gather_customer_order_month_10_11 = gather_customer_order_month_10_11.sort_values(by = ['product_name','create_year_month'])
product_name  = list(gather_customer_order_month_10_11.product_name.drop_duplicates())
#计算自行车销售数量环比
order_top_x=pd.Series([])
amount_top_x=pd.Series([])
for i in product_name:
    a=gather_customer_order_month_10_11[gather_customer_order_month_10_11['product_name']==i]['order_month_product'].pct_change()
    b=gather_customer_order_month_10_11[gather_customer_order_month_10_11['product_name']==i]['sum_order_month'].pct_change()
    order_top_x=order_top_x.append(a)
    amount_top_x=order_top_x.append(b)
#填充缺失值为0
gather_customer_order_month_10_11['order_num_diff'] = order_top_x.fillna(0)
#筛选出11月自行车数据
gather_customer_order_month_11 = gather_customer_order_month_10_11[gather_customer_order_month_10_11['create_year_month'] == '2019-11']

gather_customer_order_month_11.head(3)

(5)计算2019年1月至11月产品累计销量

#筛选2019年1月至11月自行车数据,使用的‘~’取对立面
gather_customer_order_month.create_year_month.unique()
gather_customer_order_month_1_11 = gather_customer_order_month[~gather_customer_order_month.create_year_month.isin(['2019-12','2020-01','2020-02','2020-03','2020-04','2020-05','2020-06','2020-07','2020-08','2020-09'])]
#计算2019年1月至11月自行车累计销量
gather_customer_order_month_1_11_sum = gather_customer_order_month_1_11.groupby(by = 'product_name').order_month_product.sum().reset_index()
#重命名sum_order_1_11:1-11月产品累计销量
gather_customer_order_month_1_11_sum = gather_customer_order_month_1_11_sum.rename(columns = {'order_month_product':'sum_order_1_11'})
gather_customer_order_month_1_11_sum.head()

(6)计算2019年11月自行车产品销量、环比、累计销量

累计销量在gather_customer_order_month_1_11_sum中已计算好,11月自行车环比、及产品销量占比在gather_customer_order_month_11已计算好,这里只需用pd.merge()将两张表关联起来

#以gather_customer_order_month_11为主,合并gather_customer_order_month_1_11_sum表,主键为product_name

gather_customer_order_month_11 = pd.merge(left=gather_customer_order_month_11,
                                         right=gather_customer_order_month_1_11_sum,
                                         how='left',
                                         on='product_name')

gather_customer_order_month_11.head()

字段注释:

create_year_month:时间;product_name:产品,order_month_product:产品本月累计销量,cpzl_zw:产品类别,sum_order_month:当月自行车总销量,

order_num_proportio:产品本月占比,order_num_diff:产品本月环比,sum_order_1_11:1-11月产品累计销量

存入数据库:

engine = create_engine('mysql://用户名:登陆密码:端口号/数据库名?charset=gbk')
#gather_customer_order_month_11.to_sql('pt_bicycle_product_sales_order_month_11',con=engine,if_exists='append', index=False)

5.用户行为分析

源数据表 ods_customer 每天新增客户 ods_sales_orders 订单明细表

(1)用户年龄分析
#销售订单表中仅客户编号,无客户年龄性别等信息,需要将销售订单表和客户信息表合并
sales_customer_order_11=pd.merge(df_sales_orders_11,df_CUSTOMER,on='customer_key',how='left')
#根据sales_customer_order_11['birth_date'],获取客人的年份作为新的一列,以字符串类型存储
customer_birth_year = sales_customer_order_11.birth_date.str[0:4].rename('birth_year')
sales_customer_order_11 = pd.concat([sales_customer_order_11,customer_birth_year],axis = 1)
#修改出生年为int数据类型
sales_customer_order_11['birth_year'] = sales_customer_order_11['birth_year'].fillna(0).astype('int32')
# 计算用户年龄
sales_customer_order_11['customer_age'] = 2019 - sales_customer_order_11['birth_year']
#年龄分层
listBins=[30,34,39,44,49,54,59,64]
listLabels=['30-34','35-39','40-44','45-49','50-54','55-59','60-64']
#新增'age_level'分层区间列
sales_customer_order_11['age_level'] = pd.cut(sales_customer_order_11['customer_age'],
                                              bins=listBins,
                                              labels=listLabels,
                                              include_lowest=True)
#筛选销售订单为自行车的订单信息
df_customer_order_bycle = sales_customer_order_11.loc[sales_customer_order_11['cplb_zw'] == '自行车']
# 计算年龄比率
df_customer_order_bycle['age_level_rate'] = 1 / len(df_customer_order_bycle)
#将年龄分为3个层次
df_customer_order_bycle['age_level2']=pd.cut(df_customer_order_bycle.customer_age,
                                             bins=[0,29,39,63],
                                              right=False,
                                              labels=['<=29','30-39','>=40'])
# 求每个年龄段人数
age_level2_count = df_customer_order_bycle.groupby(by = 'age_level2').sales_order_key.count().reset_index()
age_level2_count
(2)用户性别分析
#处理方法同用户年龄
gender_count = df_customer_order_bycle.groupby(by = 'gender').cplb_zw.count().reset_index()

df_customer_order_bycle = pd.merge(df_customer_order_bycle,age_level2_count,on = 'age_level2').rename(columns = {'sales_order_key_y':'age_level2_count'})
df_customer_order_bycle['age_level2_rate'] = 1/df_customer_order_bycle['age_level2_count']

df_customer_order_bycle = pd.merge(df_customer_order_bycle,gender_count,on = 'gender').rename(columns = {'cplb_zw_y':'gender_count'})
df_customer_order_bycle['gender_rate'] = 1/df_customer_order_bycle['gender_count']

df_customer_order_bycle.head(3)

存入数据库:

engine = create_engine('mysql://用户名:登陆密码:端口号/数据库名?charset=gbk')
df_customer_order_bycle.to_sql('pt_user_behavior_november',con = engine,if_exists='append', index=False)

6.热品销售分析

(1)top10产品

#筛选11月数据
gather_customer_order_11 = gather_customer_order.loc[gather_customer_order['create_year_month'] == '2019-11']
#计算产品销售数量,\ 为换行符
#按照销量降序,取TOP10产品
customer_order_11_top10 = gather_customer_order_11.groupby(by = 'product_name').order_num.count().reset_index().\
sort_values(by = 'order_num',ascending = False).reset_index(drop=True).head(10)
customer_order_11_top10.head()

(2)Top10产品销量及环比

#提取这几个字段:create_year_month月份,product_name产品名,order_month_product本月销量,cpzl_zw产品类别,order_num_diff本月产品销量环比
customer_order_month_10_11 = gather_customer_order_month_10_11[['create_year_month','product_name','order_month_product','cpzl_zw','order_num_diff']]

customer_order_month_10_11 = customer_order_month_10_11[customer_order_month_10_11['product_name'].\
                                                        isin(list(customer_order_11_top10['product_name']))]

customer_order_month_10_11['category'] = '本月TOP10销量'
customer_order_month_10_11.head()

(3)11月增速TOP10产品,销售数量及环比

customer_order_month_11 = gather_customer_order_month_10_11.loc[gather_customer_order_month_10_11['create_year_month'] == '2019-11'].\
                            sort_values(by = 'order_num_diff',ascending = False).head(10)

customer_order_month_11_top10_seep = gather_customer_order_month_10_11.loc[gather_customer_order_month_10_11['product_name'].\
                                                        isin(list(customer_order_month_11['product_name']))]
#筛选这几个字段:create_year_month月份,product_name产品名,order_month_product本月销量,cpzl_zw产品类别,order_num_diff本月产品销量环比
customer_order_month_11_top10_seep = customer_order_month_11_top10_seep[['create_year_month','product_name','order_month_product','cpzl_zw','order_num_diff']]

customer_order_month_11_top10_seep['category'] = '本月TOP10增速'
customer_order_month_11_top10_seep.head()

(4)合并TOP10销量表与TOP10增速表

#axis = 0按照行维度合并,axis = 1按照列维度合并
hot_products_11 = pd.concat([customer_order_month_10_11,customer_order_month_11_top10_seep],axis = 0)
hot_products_11.tail()

字段注释:

create_year_month:月份,product_name:产品名,order_month_product:本月产品销量,order_num_diff:本月产品环比,category:分类

存入数据库:

#存入数据库
engine = create_engine('mysql://用户名:登陆密码:端口号/数据库名?charset=gbk')
hot_products_11.to_sql('pt_hot_products_november',con = engine,if_exists='append', index=False)

7.数据可视化

PowerBI连接MySql数据库进行数据报表制作:Sales DashBoard

四、总结

1.整体销售情况

(1)自行车整体销售情况

自行车销量走势图

近11个月,11月自行车销售量最多,为3316辆;较10月增长7.1%

(2)自行车整体销售金额情况

自行车销售金额走势图

近11个月,11月自行车销售金额最高,为6190万元,较10月增长8.7%;自行车销售金额与销售数量
趋势一致

2.地域销售分析

(1)地域销售环比增速

地域销售环比增速

11月华东地区自行车销售量在8个地区中最多
较10月,华南地区增加23.6%,增速最快

(3)Top10城市销售情况

Top10城市销售情况

3.产品销售分析

(1)细分市场销量分析

细分市场销量情况

11月细分市场销售情况

11月公路自行车占比最多
较10月相比,旅游自行车增速最快

(2)公路自行车销量分析

公路自行车销量表现

11月公路自行车,除Road-350-W Yellow外,其他型号的自行车环比都呈上升趋势 Road-650 较10月增长14.29%,增速最快
Road-150 Red销售占比最高,约为19.63%

(3)山地自行车销量分析

山地自行车销量表现

11月山地自行车,除Mountain-200 Black外,其他型号的自行车环比呈上升的趋势
型号Mountain-500 Silver增速最快,为19.51%
型号Mountain-200 Silver销售份额占比最大

(4)旅游自行车销量分析

旅游自行车销量情况

11月旅游自行车,除型号Touring-2000 Blue、Touring-3000 Blue外,其他型号的自行车环呈上升趋势
型号Touring-1000 Yellow较10月增速最快,为27.18%
型号Touring-1000 Blue销售份额占比最大,为32.52%

5.用户行为分析

(1)年龄

消费年龄分布

根据年龄断划分,年龄35-39岁消费人数占比最 高,为29%;之后随着年龄的增长,占比逐渐下降。


年龄与细分市场

针对年龄(大于30岁)和细分市场的关联分析,购买公路自行车占比最大,旅游自行车占比最小。

(2)性别

消费性别分布

性别与细分市场

男性与女性购买自行车占比几乎相同
男性和女性购买公路自行车占比最高,购买旅游自行车占比最少

6.热品销售分析

(1)11月Top10销量产品

11月Top10销量产品

销量产品排行

11月型号为Mountain-200 Silver销售量最多,为395辆;较10月增长10.64%

(2)11月Top10销量增速产品

11月Top10增速产品

增速产品排行

11月,型号为Touring-1000 Yellow增速最快;较10月增长27.18%。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,561评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,218评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,162评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,470评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,550评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,806评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,951评论 3 407
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,712评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,166评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,510评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,643评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,306评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,930评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,745评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,983评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,351评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,509评论 2 348