hive的桶抽样完善补充

原创的在后面,前面转载csdn讲解

前言

在大规模数据量的数据分析及建模任务中,往往针对全量数据进行挖掘分析时会十分耗时和占用集群资源,因此一般情况下只需要抽取一小部分数据进行分析及建模操作。Hive提供了数据取样(SAMPLING)的功能,能够根据一定的规则进行数据抽样,目前支持数据块抽样,分桶抽样和随机抽样,具体如下所示:

数据块抽样(tablesample()函数)

1) tablesample(n percent) 根据hive表数据的大小按比例抽取数据,并保存到新的hive表中。如:抽取原hive表中10%的数据
(注意:测试过程中发现,select语句不能带where条件且不支持子查询,可通过新建中间表或使用随机抽样解决)
create table xxx_new as select * from xxx tablesample(10 percent)
2)tablesample(n M) 指定抽样数据的大小,单位为M。
3)tablesample(n rows) 指定抽样数据的行数,其中n代表每个map任务均取n行数据,map数量可通过hive表的简单查询语句确认(关键词:number of mappers: x)

分桶抽样

hive中分桶其实就是根据某一个字段Hash取模,放入指定数据的桶中,比如将表table_1按照ID分成100个桶,其算法是hash(id) % 100,这样,hash(id) % 100 = 0的数据被放到第一个桶中,hash(id) % 100 = 1的记录被放到第二个桶中。创建分桶表的关键语句为:CLUSTER BY语句。

分桶抽样语法:

TABLESAMPLE (BUCKET x OUT OF y [ON colname])
其中x是要抽样的桶编号,桶编号从1开始,colname表示抽样的列,y表示桶的数量。
例如:将表随机分成10组,抽取其中的第一个桶的数据
select * from table_01 tablesample(bucket 1 out of 10 on rand())

随机抽样(rand()函数)

1)使用rand()函数进行随机抽样,limit关键字限制抽样返回的数据,其中rand函数前的distribute和sort关键字可以保证数据在mapper和reducer阶段是随机分布的,案例如下:
select * from table_name where col=xxx distribute by rand() sort by rand() limit num;
2)使用order 关键词
案例如下:
select * from table_name where col=xxx order by rand() limit num;
经测试对比,千万级数据中进行随机抽样 order by方式耗时更长,大约多30秒左右。
————————————————
版权声明:本文为CSDN博主「raxanne」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/zylove2010/article/details/78290319


以上是转载CSDN,本文原创是对第二中分桶抽样的补充。

正文

分桶抽样场景(仅代表我自己)

本人使用抽样场景是:使用java-Api在hive中查找大数据,担心查询数据量过大,导致java程序崩溃,所以采用分批查询。而前文引用的 CSDN 的第一和第三种方法则不再适用。

分桶抽样的局限

当总样本为1w,当抽样数量大于5k为Nk时;
每次抽样总是最前面Nk条

解决方法

我本身需要分批 所以已经有有了固定顺序和标号,分页语法如下

select * from (select row_number() over (order by xx) as rnum ,table.* from table)t where rnum betwneen 1 to 10;

即 我的等化抽样sql为

sql主体 + where  rnum > {1} and rnum <= {2} and rnum % {3} = 0 

其中{1}、{2}为分页参数,{3}为抽样因子。抽样因子=原样本总量/需抽样数量。
以上抽样sql的抽样因子不能小于2且为自然数。
改良思想:

当抽样数量大于样本数量一半时,就先取样本得偶数得一半,再将奇数按需(数量)索取

则改良后sql(仅当抽样因子小于2时):

sql主体 + where  rnum > {1} and rnum <= {2} and ((rnum %2 = 0)  or (rnum % 2 = 1 and rnum < {4}))

{4}=(需抽样数量-原样本总量/2)*2
原样本总量/2是向下取整
简化后sql为

sql主体 + where  rnum > {1} and rnum <= {2} and (rnum < {0} or rnum % 2=0)

简化后sql得思想也可以理解为:既然当前得抽样数量大于样本总数的一半,则前面数据(无论奇偶)全部拿走,剩下抽样数量为样本总量一半,再按一半抽样。
即设定抽样数量为m,样本数量为n,"前面数据" 为x,用方程式表达上述意思:m-x<=(n-x)/2,解完方程式为x>=2m-n.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容