一篇免疫相关生物信息学文章(与Treg-enriched肿瘤患者临床预后相关的免疫基因表达特征)

今天剖析一篇文章题目为(Identification of an immune gene expression signature associated with favorable clinical features in Treg-enriched patient tumor samples )
文章题目

要充分理解这篇文章,需要三篇补充材料

参考文献17:Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotypeimmunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248–262 (2017).

参考文献18:Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

参考文献19:Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

方法学

workflow

流程图

筛选TCGA中负荷筛选标准的患者

  1. 患者选择和数据下载

    筛选有化疗药物敏感性的TCGA的肿瘤数据

  2. 只选择enriched for Tregs

    使用参考文献17的方法,他们文章中所创建了一个database(TCIA)(q < 0.05) (q也就是FDR值)

    We executed the filtering for Treg-enriched tumor samples via The Cancer Immunome Database (tcia.at) using GSEA of a non-overlapping, pancancer derived set of genes representative for Treg enrichment (FOXP3,CCL3L1, CD72, CLEC5A, ITGA4, L1CAM, LIPA, LRP1, LRRC42, MARCO,MMP12, MNDA, MRC1, MS4A6A, PELO, PLEK, PRSS23, PTGIR, ST8SIA4,STAB1).

  3. 每个cohort只要要有15samples满足帅选标准

  4. 最终只留下135 total patients for analysis across 5 TCGAcohorts (18 BLCA, 37 LUAD, 33 PAAD, 24 SKCM, 23 STAD).

聚类分析

  1. Treg DEGs 64个基因进行选择。这64个基因是从参考文章18的supplementary material table 中有。具体方法如下:

    Significantly differentially expressed genes (DEGs) (indicated by '1') identified by comparing each cell subset with the remaining subsets, and by applying filtering as described in Online Methods.

64个基因的由来,参考参考文献17
  1. 64个基因中选择32个基因,32个基因是在纳入研究的135个患者中差异表达较大的基因(踢出了那些在纳入的135个患者中差异表达较小的gene,不剔除可能会影响结果)

  2. 对着32个基因进行k-means聚类(k=2)

  3. Proportional significance analysis:聚类的结果和药物反应的结果(sens and res:药物使用敏感和药物使用不敏感)进行卡方检验

免疫细胞评价

  1. 使用cibersort对肿瘤免疫细胞浸润状态进行评估
  2. 按照参考文献17的方法可以机器学习的方法计算IPS(immunophenoscore )0-10分:

a patient’s IPS can be derived in an unbiased manner using machine learning by considering the four major categories of genes that determine immunogenicity (effector cells, immunosuppressive cells, MHC molecules, and immunomodulators) by the gene expression of the cell types these comprise (e.g., activated CD4+ T cells, activated CD8+ T cells, effector memory CD4+ T cells, Tregs, MDSCs).

The IPS is calculated on a 0–10 scale based on representative cell type gene expression z-scores, where higher scores are associated with increased immunogenicity.

  1. 按照参考文献19,探索免疫治疗相关的18个基因的聚类结果,观察聚类的结果是否和32个基因的聚类结果有相似性。

    在参考文献19中,在554个候选基因中,采取2CT-CRISRP这种较为高大上的方法帅选出了19个和免疫治疗相关的基因。

DNA可及性分析:

这一部分参考jimi大神的文章,这里不做过多解读

结果

结果一很简单:对135进行聚类,再拆分不同的癌肿进行聚类
结果一

其中cluster1 和cluster2能够很好的反应sens组和res组。卡方检验P=0.0007

图b-f只有SKCM和STAD两种癌症的卡方值P<0.05

结果二也很简单

A为cluster1和cluster2的生存分析,B为cluster1中res的患者和cluster2中res的患者。


结果二

说明了这种32个基因的expression signature可以较好的区分不同临床表现的患者

结果三:
a-e比较cluster1 和cluster2中CD8A和CD8B,HLA-A,PRF1的表达量还有比较两组cibersore免疫细胞abandance的结果。
结果三
表一是对cibersort图片的补充。
表一
f-j比较cluster1中res的患者和cluster2中res的患者的CD8A和CD8B,HLA-A,PRF1的表达量还有比较两组cibersore免疫细胞abandance的结果。
结果三-2
结果四:验证队列OS的比较,结果全部重现一遍
结果四
结果五:与免疫治疗marker相关的分析

A是IPS评分,

结果五-1

B-C是PD-1和CTLA4的表达,


结果五-2

D:使用参考文献19的18个免疫治疗相关的基因再次进行聚类分析kmeans(K=2),对比32个基因的聚类分析的结果,发现异质性=0.54.E:在这18个基因中cluster1中高表达的占了12个。热图体现。


结果五-3

文章结论

这个就自己体会了

our results reveal a gene signature able to produce unsupervised clusters of Treg-enriched patients, with one cluster of patients uniquely representative of an immunogenic tumor microenvironment. Ultimately, these results support the proposed gene signature as a putative biomarker to identify certain Treg-enriched patients with immunogenic tumors that are more likely to be associated with features of favorable clinical outcome.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,393评论 5 467
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,790评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,391评论 0 330
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,703评论 1 270
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,613评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,003评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,507评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,158评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,300评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,256评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,274评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,984评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,569评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,662评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,899评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,268评论 2 345
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,840评论 2 339

推荐阅读更多精彩内容