Docker三剑客实践之部署集群

前言

DOCKER技术在推出后掀起了一阵容器化技术的热潮,容器化使得服务的部署变得极其简易,这为微服务和分布式计算提供了很大的便利。

为了把容器化技术的优点发挥到极致,docker公司先后推出了三大技术:docker-machine,docker-compose,docker-swarm,可以说是几乎实现了容器化技术中所有可能需要的底层技术手段。

在使用go语言实现了判题引擎并打包好docker镜像后,就需要进行分布式判题的编写,这次就让我们手动实践,尝试使用docker的三大杀器来部署一个多机器构成的判题服务集群。

三剑客简介

docker-machine

docker技术是基于Linux内核的cgroup技术实现的,那么问题来了,在非Linux平台上是否就不能使用docker技术了呢?答案是可以的,不过显然需要借助虚拟机去模拟出Linux环境来。

docker-machine就是docker公司官方提出的,用于在各种平台上快速创建具有docker服务的虚拟机的技术,甚至可以通过指定driver来定制虚拟机的实现原理(一般是virtualbox)。

docker-compose

docker镜像在创建之后,往往需要自己手动pull来获取镜像,然后执行run命令来运行。当服务需要用到多种容器,容器之间又产生了各种依赖和连接的时候,部署一个服务的手动操作是令人感到十分厌烦的。

dcoker-compose技术,就是通过一个.yml配置文件,将所有的容器的部署方法、文件映射、容器连接等等一系列的配置写在一个配置文件里,最后只需要执行docker-compose up命令就会像执行脚本一样的去一个个安装容器并自动部署他们,极大的便利了复杂服务的部署。

docker-swarm

swarm是基于docker平台实现的集群技术,他可以通过几条简单的指令快速的创建一个docker集群,接着在集群的共享网络上部署应用,最终实现分布式的服务。

相比起zookeeper等集群管理框架来说,swarm显得十分轻量,作为一个工具,它把节点的加入、管理、发现等复杂的操作都浓缩为几句简单的命令,并且具有自动发现节点和调度的算法,还支持自定制。虽然swarm技术现在还不是非常成熟,但其威力已经可见一般。

浅谈docker服务架构和远程API

在正式使用docker技术部署集群应用时,我们应该先来了解一下docker工作的一些底层原理,和docker远程调用的API,这样才能大体了解集群究竟是如何运作的。

daemon

之前的docker入门文章中讲过,docker的基础服务,比如容器的创建、查看、停止、镜像的管理,其实都是由docker的守护进程(daemon)来实现的。

每次执行的docker指令其实都是通过向daemon发送请求来实现的。

daemon的运作(通信模式)主要有两种,一种是通过unix套接字(默认,但只能在本地访问到,比较安全),一种是通过监听tcp协议地址和端口来实现(这个可以实现在远程调用到docker服务)。

远程API

除了通过远程tcp协议访问远程主机上的docker服务外,docker还提供了一套基于HTTP的API,可以使用curl来实现操作远程主机上的docker服务,这为开发基于WEB的docker服务提供了便利。

远程docker使用示例

最终实现集群的时候实际是使用docker的远程调用来将不同的docker主机连接成一个整体的(通过tcp协议)。

我们不妨先来手动模拟尝试一下docker服务的远程调用吧。

首先需要在提供服务的主机上将docker的运行方式改为tcp,具体方法为修改/etc/default/docker中的DOCKER_OPTS为如下内容

-H tcp://127.0.0.1:4243 -H unix:///var/run/docker.sock

-H 后的参数是自己定义的要绑定的tcp地址和端口,成功绑定后重启docker服务就可以在该端口访问到docker的daemon服务。

不幸的是:

  • 在OSX平台上,并没有找到docker的daemon配置文件
  • 在OSX平台上,使用docker -H tcp://0.0.0.0:4243 -H unix:///var/run/docker.sock -d这样的命令来尝试以tcp的方式启动docker daemon也是失败的,并没有任何作用
  • 目前推测除了Linux平台上,其他平台上的配置方法都不太一样,但是在网络上暂时没有找到解决方案,所以后面的操作我只能通过在本地创建多个docker-machine的方式来模拟实现远程调用。

假设我们在192.168.1.123这台主机上开启了docker服务,监听了2375端口,那么我们就可以在同一网段的其他主机上(比如192.168.1.233)通过docker -H tcp://192.168.1.123:2345 <command>的方式调用到该主机上的docker服务。

比如

docker -H tcp://192.168.1.123:2345 ps
docker -H tcp://192.168.1.123:2345 images
docker -H tcp://192.168.1.123:2345 run ...

最终swarm构建集群的时候,就是通过这样的远程服务调用来调度各个节点的。

集群和分布式运算

在正式开始实践集群之前,我们有必要了解究竟什么是集群,什么是分布式计算。

首先,这两者有一个共同点,就是他们都是使用了多个服务节点的,通俗的说,就是要用到多台服务器协同工作(不一定是实体,也可能是虚拟机)。

而两者的区别在于:

  • 集群是多台机器执行同一个业务,每次根据调度算法寻找最合适的节点来执行该业务
  • 分布式计算是将一个业务拆分成多个独立的部分,由多台机器共同协作完成

集群的优点在于,当业务的需要的资源比较大时,可以避免由一个服务器去独自承担压力,而且即便有一个节点宕机了,业务仍然可以继续正常运行。这有点类似于负载均衡。

分布式的优点则是在计算上,可以协同多台机器发挥计算的威力,进行需要超高性能的运算。

构建集群

说现在我们正式开始构建集群。

使用docker-machine创建节点

由于实体机器的缺乏以及在osx上无法正常开启tcp的docker服务,我们基于docker-machine来创建多个虚拟机,作为集群中的节点。

执行下面的命令就可以创建一个新的docker-machine虚拟机manager1

docker-machine create --driver virtualbox manager1 

在创建了虚拟机后,可以使用docker-machine env manager1来查看虚拟机manager1的相关信息,包括IP地址等

现在我们继续执行命令创建worker1worker2两个节点,使用docker-machine ls命令可以查看到所有正在工作的虚拟机:

docker-machine ls
NAME       ACTIVE   DRIVER       STATE     URL                         SWARM   DOCKER        ERRORS
manager1   -        virtualbox   Running   tcp://192.168.99.100:2376           v17.06.1-ce   
worker1    -        virtualbox   Running   tcp://192.168.99.101:2376           v17.06.1-ce   
worker2    -        virtualbox   Running   tcp://192.168.99.102:2376           v17.06.1-ce   

创建docker machine后,可以通过docker-machine ssh manager1 <command>的方式来访问虚拟机,执行指令。

创建swarm集群

初始化一个swarm集群的命令为:

docker swarm init --listen-addr <MANAGER-IP>:<PORT> --advertise-addr <IP>

--listen-addr参数是管理者节点的docker服务所在的IP:PORT,也就是说,可以通过这个组合访问到该节点的docker服务。

--advertise-addr是广播地址,也就是其他节点加入该swarm集群时,需要访问的IP

现在我们在manager1节点里创建swarm网络,执行

docker-machine ssh manager1 docker swarm init --listen-addr 192.168.99.100:2377 --advertise-addr 192.168.99.100

返回响应:

Swarm initialized: current node (23lkbq7uovqsg550qfzup59t6) is now a manager.

To add a worker to this swarm, run the following command:

    docker swarm join \
    --token SWMTKN-1-3z5rzoey0u6onkvvm58f7vgkser5d7z8sfshlu7s4oz2gztlvj-c036gwrakjejql06klrfc585r \
    192.168.99.100:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the instructions.

这样便创建了一个swarm集群,并且manager1节点目前是以管理者的身份加入在节点中的。

现在我们把worker1worker2两个节点加入到swarm集群中去,分别在两个节点的虚拟机中执行docker swarm join --token ..即可:

docker-machine ssh worker1 docker swarm join --token \
    SWMTKN-1-3z5rzoey0u6onkvvm58f7vgkser5d7z8sfshlu7s4oz2gztlvj-c036gwrakjejql06klrfc585r \
    192.168.99.100:2377
This node joined a swarm as a worker.
docker-machine ssh worker2 docker swarm join --token \
    SWMTKN-1-3z5rzoey0u6onkvvm58f7vgkser5d7z8sfshlu7s4oz2gztlvj-c036gwrakjejql06klrfc585r \
    192.168.99.100:2377
This node joined a swarm as a worker.

在任何一个节点上执行docker node ls都可以查看到当前整个集群中的所有节点:

docker-machine ssh manager1 docker node ls
NAME     ACTIVE    DRIVER       STATE     URL                         SWARM   DOCKER    ERRORS
manager1   -       virtualbox   Running   tcp://192.168.99.100:2376           v1.12.3   
worker1    -       virtualbox   Running   tcp://192.168.99.101:2376           v1.12.3   
worker2    -       virtualbox   Running   tcp://192.168.99.102:2376           v1.12.3   

创建跨主机网络

集群建立完毕之后我们要做的就是在集群上部署我们的服务。但是首先应该让所有的节点处在一个共享的网络中,这样当我们把服务部署在这个共享网络中,就相当于部署在整个集群中了。

使用docker network ls可以查看到当前主机所参与的所有网络:

docker-machine ssh manager1 docker network ls
NETWORK ID         NAME            DRIVER          SCOPE
764ff31881e5        bridge          bridge          local                  
fbd9a977aa03        host            host            local               
6p6xlousvsy2        ingress         overlay         swarm            
e81af24d643d        none            null            local

其中SCOPE为swarm,DRIVER为overlay的即为集群节点中的共享网络。集群建立后会有一个默认的ingress共享网络,现在我们来再创建一个:

docker-machine ssh manager1 docker network create --driver overlay swarm_test

在跨主机网络上部署服务

在集群上部署应用,就是在共享网络上部署服务(service)

但首先要保证每个节点上都已经有所需的镜像和环境了,这点便可以通过将同一份docker-compose配置文件共享到每个主机上,使用docker-compose在每个节点上下载镜像和搭建环境的工作。

由于judge_server的服务架构很简单,就一个镜像,所以我在这里直接在每台主机上把它pull下来就好了:

docker-machine ssh manager1 docker pull registry.cn-qingdao.aliyuncs.com/marklux/judge_server:1.0
docker-machine ssh worker1 docker pull registry.cn-qingdao.aliyuncs.com/marklux/judge_server:1.0
docker-machine ssh worker2 docker pull registry.cn-qingdao.aliyuncs.com/marklux/judge_server:1.0

接下来便是重头戏,我们使用manager1节点,在共享网络上启动我们的服务

docker service create --replicas 3 --name judge_swarm -p 8090:8090 --network=swarm_test registry.cn-qingdao.aliyuncs.com/marklux/judge_server:1.0

这个命令看起来是不是很像docker run?没错,swarm最终的目的就是把操作集群变得像操作单一的docker服务端一样简单!

--replicas 用于指定服务需要的节点数量,也就是集群的规模,这个值是弹性的,你可以在后续动态的更改它。

当服务中某个节点挂掉时,swarm将会搜寻集群中剩余的可用节点,顶替上去。也就是说,swarm会动态的调度,总是保持服务是由3个节点运行着的。

-p 用于暴露端口到宿主机,这样我们就能访问到了。

--network用于指定部署service的网络是哪一个

现在在manager1节点中使用docker service ls来查看集群中的服务:

docker service ls
ID                  NAME                MODE                REPLICAS            IMAGE                                                       PORTS
kofcno637cmq        judge_swarm         replicated          3/3                 registry.cn-qingdao.aliyuncs.com/marklux/judge_server:1.0   *:8090->8090/tcp

现在我们尝试在本地访问192.168.99.100:8090/ping,就可以得到响应了,事实上,现在无论将ip换为worker1或者worker2的,响应的结果都是一样,因为此时所有节点已经处在一个共同的集群网络下了

经过大量的访问测试,可以看到hostname是在变化着的,这说明每次请求,都由swarm动态的调度,选择了不同的节点来进行处理。

遗留问题

至此集群的部署已经完成,但是我们还遗留了几个问题没有解决:

  • 集群节点的动态添加删除不是很方便,这导致在web端管理判题服务机有一定的难度,当然可以通过docker的REMOTE API来实现,不过复杂度比较高
  • 集群节点间的文件同步不太好实现,可能需要自己写脚本同步或是使用rsync之类的服务来实现
  • swarm非常适合快速构建大量集群来实现业务的处理,不过对于只有几台机器的情况而言,有些"杀鸡用牛刀"的感觉
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容

  • 这篇文章讲了Docker-machine,Docker-compose,Docker-swarm的一些基础知识。 ...
    professorLea阅读 2,719评论 0 14
  • 1 前言 本文也是在各大论坛以及文章中实践总结,主要以mysql数据库集群搭建为主,如有错误欢迎大家讨论指正 2安...
    款式太旧阅读 996评论 0 4
  • 今天,我们去了东方山水乐园,那里分山之乐园和水之乐园,而我们今天去的是水之乐园,我们进去后,换好了泳衣,怀着兴奋和...
    王悦涵阅读 310评论 1 0
  • 【青莲堂日话】160105 每日一话,是为日话 还有半个小时今天就要结束了,就像假期将至作业还未完成于是东借西凑奋...
    effelee阅读 230评论 0 0
  • blueimp-gallery blueimp画廊
    懵懂的小白阅读 211评论 0 0