单例模式的几种创建方式

参考https://blog.csdn.net/u014672511/article/details/79774847

1.饿汉模式,立即加载

class SingletonHungary {
    private static SingletonHungary singletonHungary = new SingletonHungary();
    //将构造器设置为private禁止通过new进行实例化
    private SingletonHungary() {
        
    }
    public static SingletonHungary getInstance() {
        return singletonHungary;
    }
}

2.懒汉模式就是延迟加载,也叫懒加载。

// 单例模式的懒汉实现1--线程不安全
class SingletonLazy1 {
    private static SingletonLazy1 singletonLazy;

    private SingletonLazy1() {

    }

    public static SingletonLazy1 getInstance() {
        if (null == singletonLazy) {
            try {
                // 模拟在创建对象之前做一些准备工作
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            singletonLazy = new SingletonLazy1();
        }
        return singletonLazy;
    }
}
// 单例模式的懒汉实现2--线程安全
// 通过设置同步方法,效率太低,整个方法被加锁
class SingletonLazy2 {
    private static SingletonLazy2 singletonLazy;

    private SingletonLazy2() {

    }

    public static synchronized SingletonLazy2 getInstance() {
        try {
            if (null == singletonLazy) {
                // 模拟在创建对象之前做一些准备工作
                Thread.sleep(1000);
                singletonLazy = new SingletonLazy2();
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return singletonLazy;
    }
}
// 单例模式的懒汉实现3--线程安全
// 通过设置同步代码块,效率也太低,整个代码块被加锁
class SingletonLazy3 {

    private static SingletonLazy3 singletonLazy;

    private SingletonLazy3() {

    }

    public static SingletonLazy3 getInstance() {
        try {
            synchronized (SingletonLazy3.class) {
                if (null == singletonLazy) {
                    // 模拟在创建对象之前做一些准备工作
                    Thread.sleep(1000);
                    singletonLazy = new SingletonLazy3();
                }
            }
        } catch (InterruptedException e) {
            // TODO: handle exception
        }
        return singletonLazy;
    }
}
// 单例模式的懒汉实现4--线程不安全
// 通过设置同步代码块,只同步创建实例的代码
// 但是还是有线程安全问题
class SingletonLazy4 {

    private static SingletonLazy4 singletonLazy;

    private SingletonLazy4() {

    }

    public static SingletonLazy4 getInstance() {
        try {
            if (null == singletonLazy) {        //代码1
                // 模拟在创建对象之前做一些准备工作
                Thread.sleep(1000);
                synchronized (SingletonLazy4.class) {
                    singletonLazy = new SingletonLazy4(); //代码2
                }
            }
        } catch (InterruptedException e) {
            // TODO: handle exception
        }
        return singletonLazy;
    }
}
//单例模式的懒汉实现5--线程安全
//通过设置同步代码块,使用DCL双检查锁机制
//使用双检查锁机制成功的解决了单例模式的懒汉实现的线程不安全问题和效率问题
//DCL 也是大多数多线程结合单例模式使用的解决方案
class SingletonLazy5 {

    private static SingletonLazy5 singletonLazy;

    private SingletonLazy5() {

    }

    public static SingletonLazy5 getInstance() {
        try {
            if (null == singletonLazy) {
                // 模拟在创建对象之前做一些准备工作
                Thread.sleep(1000);
                synchronized (SingletonLazy5.class) {
                    if(null == singletonLazy) {
                        singletonLazy = new SingletonLazy5();
                    }
                }
            }
        } catch (InterruptedException e) {
            // TODO: handle exception
        }
        return singletonLazy;
    }
}

3.静态内部类方式实现

//使用静态内部类实现单例模式--线程安全
class SingletonStaticInner {
    private SingletonStaticInner() {
        
    }
    private static class SingletonInner {
        private static SingletonStaticInner singletonStaticInner = new SingletonStaticInner();
    }
    public static SingletonStaticInner getInstance() {
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
        return SingletonInner.singletonStaticInner;
    }
}

4.静态代码块实现

//使用静态代码块实现单例模式
class SingletonStaticBlock {
    private static SingletonStaticBlock singletonStaticBlock;
    static {
        singletonStaticBlock = new SingletonStaticBlock();
    }
    public static SingletonStaticBlock getInstance() {
        return singletonStaticBlock;
    }
}

5.序列化与反序列化

public class SingletonStaticInnerSerializeTest {

    public static void main(String[] args) {
        try {
            SingletonStaticInnerSerialize serialize = SingletonStaticInnerSerialize.getInstance();
            System.out.println(serialize.hashCode());
            //序列化
            FileOutputStream fo = new FileOutputStream("tem");
            ObjectOutputStream oo = new ObjectOutputStream(fo);
            oo.writeObject(serialize);
            oo.close();
            fo.close();
            //反序列化
            FileInputStream fi = new FileInputStream("tem");
            ObjectInputStream oi = new ObjectInputStream(fi);
            SingletonStaticInnerSerialize serialize2 = (SingletonStaticInnerSerialize) oi.readObject();
            oi.close();
            fi.close();
            System.out.println(serialize2.hashCode());
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

}

//使用匿名内部类实现单例模式,在遇见序列化和反序列化的场景,得到的不是同一个实例
//解决这个问题是在序列化的时候使用readResolve方法,即去掉注释的部分
class SingletonStaticInnerSerialize implements Serializable {
    
    /**
     * 2018年03月28日
     */
    private static final long serialVersionUID = 1L;
    
    private static class InnerClass {
        private static SingletonStaticInnerSerialize singletonStaticInnerSerialize = new SingletonStaticInnerSerialize();
    }
    
    public static SingletonStaticInnerSerialize getInstance() {
        return InnerClass.singletonStaticInnerSerialize;
    }
    
//  protected Object readResolve() {
//      System.out.println("调用了readResolve方法");
//      return InnerClass.singletonStaticInnerSerialize;
//  }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,427评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,551评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,747评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,939评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,955评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,737评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,448评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,352评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,834评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,992评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,133评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,815评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,477评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,022评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,147评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,398评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,077评论 2 355