Hadoop学习(五)——YARN运行原理剖析

一、YARN的诞生

在hadoop1.0版本是没有yarn的概念的,而在hadoop2.0版本以上才出现了yarn,人们是希望有一套合理的管理机制,来控制整个集群的资源管理,可以搭配多种计算框架比如MapReduce,spark等等,于是才出现了yarn。

二、YARN的基本架构

yarn和hdfs一样也是一个主从架构(master、slave),分为

  • ResourceManager 全局资源管理器 分配在master机器中,管理着NodeManager
  • NodeManager 节点资源任务管理器 分配在slave机器中
图片.png

主要组成部分有:ResourceManager、NodeManager、Application Manager、Application Master、Resource Scheduler、Container

三、剖析ResourceManager

ResourceManager也是有2个组成成分,分为Application Manager(应用程序管理器)和Resource Scheduler(调度器)

  • Application Manager
    负责接收客户端传来的job请求,为应用程序分配第一个Container(资源池)来运行我们第一个Application Master,并负责监控Application Master,如果Application Master挂掉了就重启它。
  • Scheduler
    负责让我们每一个节点都充分利用起来,合理分配和调度任务。但它是一个纯调度器,不负责从事与具体应用程序相关的工作,比如运行map任务和reduce任务,监控程序,都不是它所做的。
    • 队列调度器 FIFO Scheduler
      是最简单和容易理解的调度器,但不适合共享集群这种场景,因为他是把提交的任务按顺序放进队列中,在队头的任务先被分配资源执行,等前面任务满足需求后才往后分配资源,依次往后类推,这可能导致大的任务占据整个集群资源,而后面的小任务就被阻塞了。
    • 容量调度器 Capacity Scheduler
      这个调度器以队列为单位划分资源,队列以分层方式组织资源,设计了多层级别的资源限制条件,比如队列资源限制、用户资源限制、用户应用程序数目资源限制,以便更好地让多用户共享集群。可以通过配置资源上限来灵活地防止资源滥用,队列里还是以FIFO方式调度,当一个队列的资源有剩余时,可以暂时将剩余资源共享给其他队列。这种相当于预先占用一定的系统资源。
    • 公平调度器 Fair Scheduler
      这个调度器不需要预先占用一定的系统资源,Fair调度器会为所有正在执行的job动态调整系统资源。当只有一个大任务执行时资源都给它,当有第二个小任务执行时,系统会调整一半的资源给小任务,让这2任务公平共享集群资源,执行完后又会释放掉占用的资源,最终效果是Fair调度器可以得到高的资源利用率和保证小任务及时完成。

有关上面这3种调度器的详细学习就在这篇文章中,文章链接://www.greatytc.com/p/855e40f5437d

  • Application Master
    负责监控map任务和reduce任务,每一个MapReduce程序都会产生一个Application Master,Application Master就相当于是一个任务的管理者。当我们提交一个MapReduce任务的时候,例如:hadoop jar xxx.jar命令,我们在后台jps下查看进程可以看到有一个MRAppMaster进程,这个就是Application Master。
    image.png
    上图的大致流程就是:
    1、客户端发送任务请求给ResourceManager
    2、Application Manager负责下达命令给Node Manager
    3、Node Manager启动一个Application Master进程
    4、Application Master和调度器请求资源启动map任务和reduce任务

Application Master的主要功能:
1、与ResourceManager的调度器协商获取资源。
2、与Node Manager节点通信,启动任务,停止任务,在这一阶段会涉及到Container(资源池)的知识。
3、监控其所管理的任务(map任务,reduce任务)执行状态,如果失败,则重新启动任务来申请资源。

  • Container
    Container是YARN的资源抽象,它封装了某个节点的多维度资源,比如IO,磁盘,CPU,我们可以把它理解为一个虚拟机,资源完整的小资源池。
    资源池主要将节点的资源切分出来组成一个可以单独运行任务(map任务,reduce任务)的容器,用来运行任务。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,490评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,581评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,830评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,957评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,974评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,754评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,464评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,847评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,995评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,137评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,819评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,482评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,023评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,149评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,409评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,086评论 2 355

推荐阅读更多精彩内容

  • 原文地址:http://pengtuo.tech/2018/09/22/yarn-architecture/ 一、...
    PeTu阅读 26,171评论 0 8
  • 前言: 上节课我们讲了 MR job的提交YARN的工作流程 与 YARN的架构,本次课程详细讲讲YARN,多多总...
    ly稻草阅读 4,802评论 0 5
  • 一、Yarn简介 Yarn是Hadoop集群的资源管理系统。Hadoop2.0对MapReduce框架做了彻底的设...
    scottzcw阅读 5,289评论 1 8
  • Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AM...
    大佛爱读书阅读 2,831评论 0 20
  • 本文主要分以下章节: 一、Spark专业术语定义 二、 Spark的任务提交机制 一、Spark专业术语定义 1、...
    数据萌新阅读 439评论 0 0