采用 shell 脚本进行 caffe 训练时,可以重映射输出训练过程到train.log文件,如
$CAFFE_ROOT/build/tools/caffe train --solver=solver.prototxt --gpu0 2>&1 | tee train.log
使用Caffe对输出 log 文件的解析工具 - parse_log.py:
python CAFFE_ROOT/tools/extra/parse_log.py train.log ./output_dir
输出两个解析文件:
train.log.train
train.log.test
根据解析的结果,即可绘制 train loss,test loss 和 accuracy 的变化曲线,如:
import pandas as pd
import matplotlib.pyplot as plt
train_log = pd.read_csv("./output_dir/train.log.train")
test_log = pd.read_csv("./output_dir/train.log.test")
_, ax1 = plt.subplots()
ax1.set_title("train loss and test loss")
ax1.plot(train_log["NumIters"], train_log["loss"], alpha=0.5)
ax1.plot(test_log["NumIters"], test_log["loss"], 'g')
ax1.set_xlabel('iteration')
ax1.set_ylabel('train loss')
plt.legend(loc='upper left')
ax2 = ax1.twinx()
ax2.plot(test_log["NumIters"], test_log["acc/top-1"], 'r')
ax2.plot(test_log["NumIters"], test_log["acc/top-5"], 'm')
ax2.set_ylabel('test accuracy')
plt.legend(loc='upper right')
plt.show()
print 'Done.'