Hadoop生态圈中的调度组件-YARN

一、YARN:Hadoop集群中的同一资源调度系统。Hadoop2.0后引入,主要功能有:负责集群中资源的统一调度,响应客户端的请求。

优缺点


二、YARN核心组件及架构

1. ResourceManger(RM):全局资源管理器,集群中只有一个活跃的RM,具体功能包括:处理客户端的请求;启动监控ApplicationMaster;监控NodeManger;资源的分配和调度。

2.ApplicationMaster(AM):每个应用程序(job任务)对应一个AM,负责计算job的资源情况,并向RM申请和任务的调度。具体功能包括:(1)计算job资源使用情况,与RM协商申请job的资源情况;(2)与NodeManger通信启动/停止Container,来执行/终止任务的具体执行;(3)监控任务的运行状态及失败处理。

3.NodeManager(NM):节点的资源管理器,每个节点启动一个,一般与DataNode一 一对应。具体功能包括:(1)监控和管理当前节点的资源使用情况;(2)通过心跳向RM汇报自身的资源使用情况;(3)处理RM的请求,分配执行AM的Container;(4):处理AM的请求,启动和停止执行任务的Container。

4.Container:资源的抽象,包括一系列描述信息,任务的运行资源(节点、CPU、内存等),任务运行环境,启动命令等。

架构图见 yarn-arch

三、YARN运行流程

2. RM根据内部调度器,选取一个资源空闲的NM,启动一个Container来运行AM。

3.AM计算应用程序所需资源,向RM进行资源申请,申请字段包括:

message ResourceRequestProto {  

optional PriorityProtopriority = 1; // 资源优先级  

optional stringresource_name = 2; // 期望资源所在的host  

optional ResourceProtocapability = 3; // 资源量(mem、cpu)  

optional int32num_containers = 4; // 满足条件container个数  

optional boolrelax_locality = 5 ; //default = true;   

}  

AM会根据文件的存储地址,分析运行需要的资源等,向RM申请一个期望的资源列表,RM同时考虑各个节点资源使用情况,最终分配一个资源列表。

4. RM返回资源列表,以cotainer结构

message ContainerProto {  

optional ContainerIdProtoid = 1; //container id  

optional NodeIdProtonodeId = 2; //container(资源)所在节点  

optional stringnode_http_address = 3;  

optional ResourceProtoresource = 4; //分配的container数量  

optional PriorityProtopriority = 5; //container的优先级  

optional hadoop.common.TokenProtocontainer_token = 6; //container token,用于安全认证  

}

5. AM与NM通信,分配Container并执行任务,以 ContainerLaunchContext 结构发出请求。同时监控各个节点的运行情况(定期心跳),如果失败,AM可将该节点的任务调度到其他节点运行。

一个NN可以启动多个Container。

ContainerLaunchContext结构:

message ContainerLaunchContextProto {  

repeated StringLocalResourceMapProtolocalResources = 1; //该Container运行的程序所需的在资源,例如:jar包  

optional bytestokens = 2;//Security模式下的SecurityTokens  

repeated StringBytesMapProtoservice_data = 3;  

repeated StringStringMapProtoenvironment = 4; //Container启动所需的环境变量  

repeated stringcommand = 5; //该Container所运行程序的命令,比如运行的为java程序,即$JAVA_HOME/bin/java org.ourclassrepeated ApplicationACLMapProto application_ACLs = 6;//该Container所属的Application的访问控制列表  

RM负责AM的启动和监控,若异常可重新运行。

AM负责真个job任务的运行、监控,及失败处理操作。

四、YARN的调度器

先进先出FIFO

Cap 容量调度器

Fire 公平调度器

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,509评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,806评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,875评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,441评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,488评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,365评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,190评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,062评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,500评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,706评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,834评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,559评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,167评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,779评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,912评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,958评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,779评论 2 354

推荐阅读更多精彩内容