[目标检测][图像分割] 使用 mask rcnn 训练自己数据集 识别琦玉老师

介绍

  1. 没有过多的解释, 需要一定程序基础和动手能力
  2. 没有环境配置
  3. 第一次写东西, 有问题请见谅

克隆以及观察代码

  1. clone https://github.com/matterport/Mask_RCNN.git
  2. 找到文件 balloon
    image.png
  3. 查看注释
  • 看 BalloonDataset 中的 load_balloon 方法可知使用的标记软件为 VGG Image Annotator,
def load_balloon(self, dataset_dir, subset):
        """Load a subset of the Balloon dataset.
        dataset_dir: Root directory of the dataset.
        subset: Subset to load: train or val
        """
        # Add classes. We have only one class to add.
        self.add_class("balloon", 1, "balloon")

        # Train or validation dataset?
        assert subset in ["train", "val"]
        dataset_dir = os.path.join(dataset_dir, subset)

        # Load annotations
        # VGG Image Annotator (up to version 1.6) saves each image in the form:
        # { 'filename': '28503151_5b5b7ec140_b.jpg',
        #   'regions': {
        #       '0': {
        #           'region_attributes': {},
        #           'shape_attributes': {
        #               'all_points_x': [...],
        #               'all_points_y': [...],
        #               'name': 'polygon'}},
        #       ... more regions ...
        #   },
        #   'size': 100202
        # }
        # We mostly care about the x and y coordinates of each region
        # Note: In VIA 2.0, regions was changed from a dict to a list.
        annotations = json.load(open(os.path.join(dataset_dir, "via_region_data.json")))
        annotations = list(annotations.values())  # don't need the dict keys

        # The VIA tool saves images in the JSON even if they don't have any
        # annotations. Skip unannotated images.
        annotations = [a for a in annotations if a['regions']]

        # Add images
        for a in annotations:
            # Get the x, y coordinaets of points of the polygons that make up
            # the outline of each object instance. These are stores in the
            # shape_attributes (see json format above)
            # The if condition is needed to support VIA versions 1.x and 2.x.
            if type(a['regions']) is dict:
                polygons = [r['shape_attributes'] for r in a['regions'].values()]
            else:
                polygons = [r['shape_attributes'] for r in a['regions']] 

            # load_mask() needs the image size to convert polygons to masks.
            # Unfortunately, VIA doesn't include it in JSON, so we must read
            # the image. This is only managable since the dataset is tiny.
            image_path = os.path.join(dataset_dir, a['filename'])
            image = skimage.io.imread(image_path)
            height, width = image.shape[:2]

            self.add_image(
                "balloon",
                image_id=a['filename'],  # use file name as a unique image id
                path=image_path,
                width=width, height=height,
                polygons=polygons)
  1. 在这里我选用这个版本
    image.png

准备供训练的图集

  1. 网上随便找到一些埼玉老师的图片

  2. 分别放到训练目录train和测试目录val


    image.png
  3. 使用 VGG Image Annotator 中的 Polygon region shape 框选需要检测的区域

  4. 点击Region Attributes 添加source(balloon)和class_name(埼玉)

  5. 其他图片也是一样的处理, 具体不多说了.


    image.png
  6. 导出json结构, 放到图片目录, 如下


    image.png

接下来是修改代

  1. 在这里我们只修改 load_balloon 方法中的 self.add_class("balloon", 1, "balloon), 修改后如下
def load_balloon(self, dataset_dir, subset):
        """Load a subset of the Balloon dataset.
        dataset_dir: Root directory of the dataset.
        subset: Subset to load: train or val
        """
        # Add classes. We have only one class to add.
        self.add_class("balloon", 1, "埼玉") #old: self.add_class("balloon", 1, "balloon)

        # Train or validation dataset?
        assert subset in ["train", "val"]
        dataset_dir = os.path.join(dataset_dir, subset)

  1. 修改train方法
  • 添加custom_callback, 用来保存训练好的权重. 每个epoch完成会自动保存权重. 随时可以强制停止, 然后测试训练效果.
def train(model):
    """Train the model."""
    # Training dataset.
    dataset_train = BalloonDataset()
    dataset_train.load_balloon(args.dataset, "train")
    dataset_train.prepare()

    # Validation dataset
    dataset_val = BalloonDataset()
    dataset_val.load_balloon(args.dataset, "val")
    dataset_val.prepare()

    # *** This training schedule is an example. Update to your needs ***
    # Since we're using a very small dataset, and starting from
    # COCO trained weights, we don't need to train too long. Also,
    # no need to train all layers, just the heads should do it.
    print("Training network heads")
    model.train(dataset_train, dataset_val,
                learning_rate=config.LEARNING_RATE,
                epochs=100,
                layers='heads', custom_callbacks=[keras.callbacks.ModelCheckpoint(weights_path,
                                            verbose=0, save_weights_only=True)])
  1. 手动指定权重文件路径
  • 添加代码, 当文件不存在的时候, 创建权重文件, 如下
    # Select weights file to load
    if args.weights.lower() == "coco":
        weights_path = COCO_WEIGHTS_PATH
        # Download weights file
        if not os.path.exists(weights_path):
            utils.download_trained_weights(weights_path)
    elif args.weights.lower() == "last":
        # Find last trained weights
        weights_path = model.find_last()
    elif args.weights.lower() == "imagenet":
        # Start from ImageNet trained weights
        weights_path = model.get_imagenet_weights()
    else:
        # 添加代码, 当文件不存在的时候, 创建权重文件
        if os.path.isfile(args.weights) == False:
            model.keras_model.save_weights(args.weights)

        weights_path = args.weights
  1. 修改detect_and_color_splash方法
  • 添加方法box_splash, 用来画框
  • 在下方的detect_and_color_splash方法中注释掉splash = color_splash(image, r['masks'])使用splash = box_splash(image, r)
def box_splash(image, r):
    rois = r["rois"]
    class_ids = r["class_ids"]
    scores = r["scores"]

    height, width = image.shape[:2]
    print("height, width =", height, width)
    
    font = ImageFont.truetype('simsun.ttc',12)
    
    image = Image.fromarray(image)
    draw = ImageDraw.Draw(image)

    # 画框
    for index in range(len(rois)):
        roi = rois[index]
        class_id = class_ids[index]
        score = scores[index]

        y1, x1, y2, x2 = roi[0], roi[1], roi[2], roi[3]
        print("y1, x1, y2, x2 =", y1, x1, y2, x2)
        
        draw.line((x1, y1, x1, y2), "red")
        draw.line((x1, y2, x2, y2), "red")        
        draw.line((x2, y2, x2, y1), "red")        
        draw.line((x2, y1, x1, y1), "red")
                
        # 画类别名
        draw.text((x1, y1), "class_name: qiyu, score: " + str(score), (255,255,255), font = font)


    return np.asarray(image)


def detect_and_color_splash(model, image_path=None, video_path=None):
    assert image_path or video_path

    # Image or video?
    if image_path:
        # Run model detection and generate the color splash effect
        print("Running on {}".format(args.image))
        # Read image
        image = skimage.io.imread(args.image)
        # Detect objects
        r = model.detect([image], verbose=1)[0]
        # Color splash
        # splash = color_splash(image, r['masks'])
        splash = box_splash(image, r)
        # Save output
        file_name = "splash_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now())
        skimage.io.imsave(file_name, splash)
    elif video_path:
        import cv2
        # Video capture
        vcapture = cv2.VideoCapture(video_path)
        width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = vcapture.get(cv2.CAP_PROP_FPS)

        # Define codec and create video writer
        file_name = "splash_{:%Y%m%dT%H%M%S}.avi".format(datetime.datetime.now())
        vwriter = cv2.VideoWriter(file_name,
                                  cv2.VideoWriter_fourcc(*'MJPG'),
                                  fps, (width, height))

        count = 0
        success = True
        while success:
            print("frame: ", count)
            # Read next image
            success, image = vcapture.read()
            if success:
                # OpenCV returns images as BGR, convert to RGB
                image = image[..., ::-1]
                # Detect objects
                r = model.detect([image], verbose=0)[0]
                # Color splash
                splash = color_splash(image, r['masks'])
                # RGB -> BGR to save image to video
                splash = splash[..., ::-1]
                # Add image to video writer
                vwriter.write(splash)
                count += 1
        vwriter.release()
    print("Saved to ", file_name)

开始训练咯

  1. python balloon.py train --weights ball --dataset D:\Mine\Pictures\maskrcnn\ones
  • 使用train命令
  • weights后面是指定的保存权重文件的名称
  • dataset后面是数据集的根目录
  1. 训练中


    image.png
  2. 训练了12个epoch后


    image.png

图片测试

  • python balloon.py splash --weights ball --image D:\Mine\Pictures\maskrcnn\ones\train\2.jpg

  • 使用命令splash

  • weights用之前训练的ball文件

  • image 指定图片测试

  • 检测一张, 还不错?


    image.png
  • 再试一试, 居然无法区分埼玉老师和小丸子爷爷?


    image.png

附上代码, 其实和balloon差不多就改了几行

#-*- coding:utf8 -*-

"""
Mask R-CNN
Train on the toy Balloon dataset and implement color splash effect.

Copyright (c) 2018 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla

------------------------------------------------------------

Usage: import the module (see Jupyter notebooks for examples), or run from
       the command line as such:

    # Train a new model starting from pre-trained COCO weights
    python3 balloon.py train --dataset=/path/to/balloon/dataset --weights=coco

    # Resume training a model that you had trained earlier
    python3 balloon.py train --dataset=/path/to/balloon/dataset --weights=last

    # Train a new model starting from ImageNet weights
    python3 balloon.py train --dataset=/path/to/balloon/dataset --weights=imagenet

    # Apply color splash to an image
    python3 balloon.py splash --weights=/path/to/weights/file.h5 --image=<URL or path to file>

    # Apply color splash to video using the last weights you trained
    python3 balloon.py splash --weights=last --video=<URL or path to file>
"""

import os
import sys
import json
import datetime
import numpy as np
import skimage.draw
import keras

# Root directory of the project
ROOT_DIR = os.path.abspath("../../")

# Import Mask RCNN
sys.path.append(ROOT_DIR)  # To find local version of the library
from mrcnn.config import Config
from mrcnn import model as modellib, utils

# Path to trained weights file
COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")

# Directory to save logs and model checkpoints, if not provided
# through the command line argument --logs
DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs")

############################################################
#  Configurations
############################################################


class BalloonConfig(Config):
    """Configuration for training on the toy  dataset.
    Derives from the base Config class and overrides some values.
    """
    # Give the configuration a recognizable name
    NAME = "balloon"

    # We use a GPU with 12GB memory, which can fit two images.
    # Adjust down if you use a smaller GPU.
    IMAGES_PER_GPU = 2

    # Number of classes (including background)
    NUM_CLASSES = 1 + 1  # Background + balloon

    # Number of training steps per epoch
    STEPS_PER_EPOCH = 100

    # Skip detections with < 90% confidence
    DETECTION_MIN_CONFIDENCE = 0.9


############################################################
#  Dataset
############################################################

class BalloonDataset(utils.Dataset):

    def load_balloon(self, dataset_dir, subset):
        """Load a subset of the Balloon dataset.
        dataset_dir: Root directory of the dataset.
        subset: Subset to load: train or val
        """
        # Add classes. We have only one class to add.
        self.add_class("balloon", 1, "balloon")

        # Train or validation dataset?
        assert subset in ["train", "val"]
        dataset_dir = os.path.join(dataset_dir, subset)

        # Load annotations
        # VGG Image Annotator (up to version 1.6) saves each image in the form:
        # { 'filename': '28503151_5b5b7ec140_b.jpg',
        #   'regions': {
        #       '0': {
        #           'region_attributes': {},
        #           'shape_attributes': {
        #               'all_points_x': [...],
        #               'all_points_y': [...],
        #               'name': 'polygon'}},
        #       ... more regions ...
        #   },
        #   'size': 100202
        # }
        # We mostly care about the x and y coordinates of each region
        # Note: In VIA 2.0, regions was changed from a dict to a list.
        annotations = json.load(open(os.path.join(dataset_dir, "via_region_data.json")))
        annotations = list(annotations.values())  # don't need the dict keys

        # The VIA tool saves images in the JSON even if they don't have any
        # annotations. Skip unannotated images.
        annotations = [a for a in annotations if a['regions']]

        # Add images
        for a in annotations:
            # Get the x, y coordinaets of points of the polygons that make up
            # the outline of each object instance. These are stores in the
            # shape_attributes (see json format above)
            # The if condition is needed to support VIA versions 1.x and 2.x.
            if type(a['regions']) is dict:
                polygons = [r['shape_attributes'] for r in a['regions'].values()]
            else:
                polygons = [r['shape_attributes'] for r in a['regions']] 

            # load_mask() needs the image size to convert polygons to masks.
            # Unfortunately, VIA doesn't include it in JSON, so we must read
            # the image. This is only managable since the dataset is tiny.
            image_path = os.path.join(dataset_dir, a['filename'])
            image = skimage.io.imread(image_path)
            height, width = image.shape[:2]

            self.add_image(
                "balloon",
                image_id=a['filename'],  # use file name as a unique image id
                path=image_path,
                width=width, height=height,
                polygons=polygons)

    def load_mask(self, image_id):
        """Generate instance masks for an image.
       Returns:
        masks: A bool array of shape [height, width, instance count] with
            one mask per instance.
        class_ids: a 1D array of class IDs of the instance masks.
        """
        # If not a balloon dataset image, delegate to parent class.
        image_info = self.image_info[image_id]
        if image_info["source"] != "balloon":
            return super(self.__class__, self).load_mask(image_id)

        # Convert polygons to a bitmap mask of shape
        # [height, width, instance_count]
        info = self.image_info[image_id]
        mask = np.zeros([info["height"], info["width"], len(info["polygons"])],
                        dtype=np.uint8)
        for i, p in enumerate(info["polygons"]):
            # Get indexes of pixels inside the polygon and set them to 1
            rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x'])
            mask[rr, cc, i] = 1

        # Return mask, and array of class IDs of each instance. Since we have
        # one class ID only, we return an array of 1s
        return mask.astype(np.bool), np.ones([mask.shape[-1]], dtype=np.int32)

    def image_reference(self, image_id):
        """Return the path of the image."""
        info = self.image_info[image_id]
        if info["source"] == "balloon":
            return info["path"]
        else:
            super(self.__class__, self).image_reference(image_id)


def train(model):
    """Train the model."""
    # Training dataset.
    dataset_train = BalloonDataset()
    dataset_train.load_balloon(args.dataset, "train")
    dataset_train.prepare()

    # Validation dataset
    dataset_val = BalloonDataset()
    dataset_val.load_balloon(args.dataset, "val")
    dataset_val.prepare()

    # *** This training schedule is an example. Update to your needs ***
    # Since we're using a very small dataset, and starting from
    # COCO trained weights, we don't need to train too long. Also,
    # no need to train all layers, just the heads should do it.
    print("Training network heads")
    model.train(dataset_train, dataset_val,
                learning_rate=config.LEARNING_RATE,
                epochs=100,
                layers='heads', custom_callbacks=[keras.callbacks.ModelCheckpoint(weights_path,
                                            verbose=0, save_weights_only=True)])


def color_splash(image, mask):
    """Apply color splash effect.
    image: RGB image [height, width, 3]
    mask: instance segmentation mask [height, width, instance count]

    Returns result image.
    """
    # Make a grayscale copy of the image. The grayscale copy still
    # has 3 RGB channels, though.
    gray = skimage.color.gray2rgb(skimage.color.rgb2gray(image)) * 255
    # Copy color pixels from the original color image where mask is set
    if mask.shape[-1] > 0:
        # We're treating all instances as one, so collapse the mask into one layer
        mask = (np.sum(mask, -1, keepdims=True) >= 1)
        splash = np.where(mask, image, gray).astype(np.uint8)
    else:
        splash = gray.astype(np.uint8)
    return splash


from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont

#画框
def box_splash(image, r):
    rois = r["rois"]
    class_ids = r["class_ids"]
    scores = r["scores"]

    height, width = image.shape[:2]
    print("height, width =", height, width)
    
    font = ImageFont.truetype('simsun.ttc',12)
    
    image = Image.fromarray(image)
    draw = ImageDraw.Draw(image)

    # 画框
    for index in range(len(rois)):
        roi = rois[index]
        class_id = class_ids[index]
        score = scores[index]

        y1, x1, y2, x2 = roi[0], roi[1], roi[2], roi[3]
        print("y1, x1, y2, x2 =", y1, x1, y2, x2)
        
        draw.line((x1, y1, x1, y2), "red")
        draw.line((x1, y2, x2, y2), "red")        
        draw.line((x2, y2, x2, y1), "red")        
        draw.line((x2, y1, x1, y1), "red")
                
        # 画类别名
        draw.text((x1, y1), "class_name: qiyu, score: " + str(score), (255,255,255), font = font)


    return np.asarray(image)


def detect_and_color_splash(model, image_path=None, video_path=None):
    assert image_path or video_path

    # Image or video?
    if image_path:
        # Run model detection and generate the color splash effect
        print("Running on {}".format(args.image))
        # Read image
        image = skimage.io.imread(args.image)
        # Detect objects
        r = model.detect([image], verbose=1)[0]
        # Color splash
        # splash = color_splash(image, r['masks'])
        splash = box_splash(image, r)
        # Save output
        file_name = "splash_{:%Y%m%dT%H%M%S}.png".format(datetime.datetime.now())
        skimage.io.imsave(file_name, splash)
    elif video_path:
        import cv2
        # Video capture
        vcapture = cv2.VideoCapture(video_path)
        width = int(vcapture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(vcapture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = vcapture.get(cv2.CAP_PROP_FPS)

        # Define codec and create video writer
        file_name = "splash_{:%Y%m%dT%H%M%S}.avi".format(datetime.datetime.now())
        vwriter = cv2.VideoWriter(file_name,
                                  cv2.VideoWriter_fourcc(*'MJPG'),
                                  fps, (width, height))

        count = 0
        success = True
        while success:
            print("frame: ", count)
            # Read next image
            success, image = vcapture.read()
            if success:
                # OpenCV returns images as BGR, convert to RGB
                image = image[..., ::-1]
                # Detect objects
                r = model.detect([image], verbose=0)[0]
                # Color splash
                splash = color_splash(image, r['masks'])
                # RGB -> BGR to save image to video
                splash = splash[..., ::-1]
                # Add image to video writer
                vwriter.write(splash)
                count += 1
        vwriter.release()
    print("Saved to ", file_name)


############################################################
#  Training
############################################################

if __name__ == '__main__':
    import argparse

    # Parse command line arguments
    parser = argparse.ArgumentParser(
        description='Train Mask R-CNN to detect balloons.')
    parser.add_argument("command",
                        metavar="<command>",
                        help="'train' or 'splash'")
    parser.add_argument('--dataset', required=False,
                        metavar="/path/to/balloon/dataset/",
                        help='Directory of the Balloon dataset')
    parser.add_argument('--weights', required=True,
                        metavar="/path/to/weights.h5",
                        help="Path to weights .h5 file or 'coco'")
    parser.add_argument('--logs', required=False,
                        default=DEFAULT_LOGS_DIR,
                        metavar="/path/to/logs/",
                        help='Logs and checkpoints directory (default=logs/)')
    parser.add_argument('--image', required=False,
                        metavar="path or URL to image",
                        help='Image to apply the color splash effect on')
    parser.add_argument('--video', required=False,
                        metavar="path or URL to video",
                        help='Video to apply the color splash effect on')
    args = parser.parse_args()

    # Validate arguments
    if args.command == "train":
        assert args.dataset, "Argument --dataset is required for training"
    elif args.command == "splash":
        assert args.image or args.video,\
               "Provide --image or --video to apply color splash"

    print("Weights: ", args.weights)
    print("Dataset: ", args.dataset)
    print("Logs: ", args.logs)

    # Configurations
    if args.command == "train":
        config = BalloonConfig()
    else:
        class InferenceConfig(BalloonConfig):
            # Set batch size to 1 since we'll be running inference on
            # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
            GPU_COUNT = 1
            IMAGES_PER_GPU = 1
        config = InferenceConfig()
    config.display()

    # Create model
    if args.command == "train":
        model = modellib.MaskRCNN(mode="training", config=config,
                                  model_dir=args.logs)
    else:
        model = modellib.MaskRCNN(mode="inference", config=config,
                                  model_dir=args.logs)

    # Select weights file to load
    if args.weights.lower() == "coco":
        weights_path = COCO_WEIGHTS_PATH
        # Download weights file
        if not os.path.exists(weights_path):
            utils.download_trained_weights(weights_path)
    elif args.weights.lower() == "last":
        # Find last trained weights
        weights_path = model.find_last()
    elif args.weights.lower() == "imagenet":
        # Start from ImageNet trained weights
        weights_path = model.get_imagenet_weights()
    else:
        if os.path.isfile(args.weights) == False:
            model.keras_model.save_weights(args.weights)
        weights_path = args.weights

    # Load weights
    print("Loading weights ", weights_path)
    if args.weights.lower() == "coco":
        # Exclude the last layers because they require a matching
        # number of classes
        model.load_weights(weights_path, by_name=True, exclude=[
            "mrcnn_class_logits", "mrcnn_bbox_fc",
            "mrcnn_bbox", "mrcnn_mask"])
    else:
        model.load_weights(weights_path, by_name=True)

    # Train or evaluate
    if args.command == "train":
        train(model)
    elif args.command == "splash":
        detect_and_color_splash(model, image_path=args.image,
                                video_path=args.video)
    else:
        print("'{}' is not recognized. "
              "Use 'train' or 'splash'".format(args.command))

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容