假设函数:
这样代价函数,是非凸函数,如果使用梯度下降,几乎不能收敛到最全局最小值,所以我们需要寻找其他的是凸函数的代价函数,这样就可以使用之前学过的算法了。
(这里有一门知识,凸性分析,凸优化)
代价函数
可以这样做是因为y要么是1,要么是0。
当假设h(θ)=1时,如果y是1,那么cost=0;如果y=0,那么cost=∞。
当假设h(θ)=0时,如果y时1,那么cost=∞;如果y=0,那么cost=0。
假设函数:
这样代价函数,是非凸函数,如果使用梯度下降,几乎不能收敛到最全局最小值,所以我们需要寻找其他的是凸函数的代价函数,这样就可以使用之前学过的算法了。
(这里有一门知识,凸性分析,凸优化)
代价函数
可以这样做是因为y要么是1,要么是0。
当假设h(θ)=1时,如果y是1,那么cost=0;如果y=0,那么cost=∞。
当假设h(θ)=0时,如果y时1,那么cost=∞;如果y=0,那么cost=0。