机器学习-PCA

前言

PCA(Principal Component Analysis)是一种常用的数据降维方法,它的主要思想是将高维数据降维到一个低维空间,同时保留尽可能多的原始数据的信息。

定义

PCA (Principal Component Analysis) 是一种常用的数据降维算法,用于对高维数据进行降维和特征提取。它的主要思想是通过对数据的协方差矩阵进行特征值分解,选择前 k 个特征值最大的特征向量作为新的主成分,将原始数据投影到主成分空间,从而实现数据降维。

PCA 常用于数据降维、数据可视化、数据压缩等场景,其特点是可以有效的降低数据维度,保留数据的主要特征。

PCA步骤
  1. 中心化:将数据的每一个特征列减去该列的平均值,使得每一个特征的均值为 0。

  2. 协方差:计算样本的协方差矩阵,该矩阵表示各个特征之间的关系。

  3. 特征分析:对协方差矩阵进行特征分析,得到特征值和特征向量。特征向量表示了新的坐标轴的方向,特征值表示了新坐标轴的方差。

  4. 降维:选择特征值较大的特征向量,构造新的坐标系,将原始数据投影到新的坐标系上,从而达到降维的目的。

     这些步骤通过计算的过程可以得到一个主成分的矩阵,该矩阵的列表示了新的坐标轴,行表示了每一个样本在新坐标系上的坐标。
    
     PCA 算法的一个重要优点是可以有效的降低数据的维度,降低数据的维数对于降低算法的复杂度和避免过拟合都有很重
    
PCA 优点
  1. 简化数据:PCA 可以有效的降低数据的维度,简化数据,便于后续数据分析。
  2. 减少噪声:PCA 可以把噪声数据降低到最小,提高数据的质量。
  3. 可视化:PCA 可以将高维数据映射到二维或三维空间,便于人眼观察和可视化。
  4. 去冗余:PCA 可以消除数据中的冗余信息,只保留主要信息。
PCA 缺点
  1. 信息损失:PCA 为了降低数据的维度,可能会导致一定的信息损失。
  2. 难以解释:PCA 降维后的数据维度和特征很难被人类直接理解和解释。
  3. 不适用于非线性数据:PCA 适用于线性数据,对于非线性数据,PCA 可能不能得到理想的结果。

所以在使用PCA时,要根据你的实际情况权衡利弊,结合其他算法一起使用

代码
import numpy as np

# 使用这段代码可以实现将原始数据降维至指定的维数,并返回降维后的数据

def PCA(X, k=None):
    """
    X: m x n 的数据矩阵,m 表示样本数量,n 表示每个样本的特征数
    k: 需要保留的主成分数量,如果不指定,则保留所有的主成分
    """
    # 对样本进行中心化
    X_mean = np.mean(X, axis=0)
    X = X - X_mean

    # 计算协方差矩阵
    cov_matrix = np.cov(X.T)

    # 计算协方差矩阵的特征值和特征向量
    eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)

    # 对特征值进行排序,从大到小
    eigenvalues_sorted_index = np.argsort(eigenvalues)[::-1]
    eigenvalues = eigenvalues[eigenvalues_sorted_index]
    eigenvectors = eigenvectors[:, eigenvalues_sorted_index]

    # 根据 k 的值选择保留的主成分数量
    if k is not None:
        eigenvalues = eigenvalues[:k]
        eigenvectors = eigenvectors[:, :k]

    # 计算降维后的数据
    transformed_X = np.dot(X, eigenvectors)

    return transformed_X
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,240评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,328评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,182评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,121评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,135评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,093评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,013评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,854评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,295评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,513评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,398评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,989评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,636评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,657评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容