Pandas - 10.3 单个分组聚合

单个分组

import pandas as pd
import seaborn as sns

保存分组

tips_10 = sns.load_dataset('tips').sample(10, random_state=42)
print(tips_10)
'''
     total_bill   tip     sex smoker   day    time  size
24        19.82  3.18    Male     No   Sat  Dinner     2
6          8.77  2.00    Male     No   Sun  Dinner     2
153       24.55  2.00    Male     No   Sun  Dinner     4
211       25.89  5.16    Male    Yes   Sat  Dinner     4
198       13.00  2.00  Female    Yes  Thur   Lunch     2
176       17.89  2.00    Male    Yes   Sun  Dinner     2
192       28.44  2.56    Male    Yes  Thur   Lunch     2
124       12.48  2.52  Female     No  Thur   Lunch     2
9         14.78  3.23    Male     No   Sun  Dinner     2
101       15.38  3.00  Female    Yes   Fri  Dinner     2
'''

grouped = tips_10.groupby('sex')
# 查看实际分组
print(grouped.groups)
'''
{'Male': [24, 6, 153, 211, 176, 192, 9], 'Female': [198, 124, 101]}
'''
{'Male': [24, 6, 153, 211, 176, 192, 9], 'Female': [198, 124, 101]}

选择分组

female = grouped.get_group('Female')
print(female)
'''
     total_bill   tip     sex smoker   day    time  size
198       13.00  2.00  Female    Yes  Thur   Lunch     2
124       12.48  2.52  Female     No  Thur   Lunch     2
101       15.38  3.00  Female    Yes   Fri  Dinner     2
'''
     total_bill   tip     sex smoker   day    time  size
198       13.00  2.00  Female    Yes  Thur   Lunch     2
124       12.48  2.52  Female     No  Thur   Lunch     2
101       15.38  3.00  Female    Yes   Fri  Dinner     2

涉及多个变量的分组计算

针对可能计算的列计算,删除不能计算的列

avg = grouped.mean()
# 没有意义的列不计算不展示
print(avg)
'''
        total_bill       tip      size
sex                                   
Male         20.02  2.875714  2.571429
Female       13.62  2.506667  2.000000
'''
        total_bill       tip      size
sex                                   
Male         20.02  2.875714  2.571429
Female       13.62  2.506667  2.000000

历遍分组

for sex_group in grouped:
    print(sex_group)
    
'''
('Male',      total_bill   tip   sex smoker   day    time  size
24        19.82  3.18  Male     No   Sat  Dinner     2
6          8.77  2.00  Male     No   Sun  Dinner     2
153       24.55  2.00  Male     No   Sun  Dinner     4
211       25.89  5.16  Male    Yes   Sat  Dinner     4
176       17.89  2.00  Male    Yes   Sun  Dinner     2
192       28.44  2.56  Male    Yes  Thur   Lunch     2
9         14.78  3.23  Male     No   Sun  Dinner     2)
('Female',      total_bill   tip     sex smoker   day    time  size
198       13.00  2.00  Female    Yes  Thur   Lunch     2
124       12.48  2.52  Female     No  Thur   Lunch     2
101       15.38  3.00  Female    Yes   Fri  Dinner     2)
'''
('Male',      total_bill   tip   sex smoker   day    time  size
24        19.82  3.18  Male     No   Sat  Dinner     2
6          8.77  2.00  Male     No   Sun  Dinner     2
153       24.55  2.00  Male     No   Sun  Dinner     4
211       25.89  5.16  Male    Yes   Sat  Dinner     4
176       17.89  2.00  Male    Yes   Sun  Dinner     2
192       28.44  2.56  Male    Yes  Thur   Lunch     2
9         14.78  3.23  Male     No   Sun  Dinner     2)
('Female',      total_bill   tip     sex smoker   day    time  size
198       13.00  2.00  Female    Yes  Thur   Lunch     2
124       12.48  2.52  Female     No  Thur   Lunch     2
101       15.38  3.00  Female    Yes   Fri  Dinner     2)

grouped中的元素sex_group是一个元组,sex_group的第一个元素是字符串(类似于‘键’),第二个元素是DataFrame(类似于‘值’)

for sex_group in grouped:
    print('the type is: {}'.format(type(sex_group)))
    print('the length is: {}\n'.format(len(sex_group)))
    first_element = sex_group[0]
    print('the first element is:{}'.format(first_element))
    print('it has a type of: {}\n'.format(type(first_element)))
    second_element = sex_group[1]
    print('the second element is:\n{}'.format(second_element))
    print('it has a type of: {}\n'.format(type(second_element)))
    print('what we have:')
    print(sex_group)
    break
    
'''
the type is: <class 'tuple'>
the length is: 2

the first element is:Male
it has a type of: <class 'str'>

the second element is:
     total_bill   tip   sex smoker   day    time  size
24        19.82  3.18  Male     No   Sat  Dinner     2
6          8.77  2.00  Male     No   Sun  Dinner     2
153       24.55  2.00  Male     No   Sun  Dinner     4
211       25.89  5.16  Male    Yes   Sat  Dinner     4
176       17.89  2.00  Male    Yes   Sun  Dinner     2
192       28.44  2.56  Male    Yes  Thur   Lunch     2
9         14.78  3.23  Male     No   Sun  Dinner     2
it has a type of: <class 'pandas.core.frame.DataFrame'>

what we have:
('Male',      total_bill   tip   sex smoker   day    time  size
24        19.82  3.18  Male     No   Sat  Dinner     2
6          8.77  2.00  Male     No   Sun  Dinner     2
153       24.55  2.00  Male     No   Sun  Dinner     4
211       25.89  5.16  Male    Yes   Sat  Dinner     4
176       17.89  2.00  Male    Yes   Sun  Dinner     2
192       28.44  2.56  Male    Yes  Thur   Lunch     2
9         14.78  3.23  Male     No   Sun  Dinner     2)
'''
the type is: <class 'tuple'>
the length is: 2

the first element is:Male
it has a type of: <class 'str'>

the second element is:
     total_bill   tip   sex smoker   day    time  size
24        19.82  3.18  Male     No   Sat  Dinner     2
6          8.77  2.00  Male     No   Sun  Dinner     2
153       24.55  2.00  Male     No   Sun  Dinner     4
211       25.89  5.16  Male    Yes   Sat  Dinner     4
176       17.89  2.00  Male    Yes   Sun  Dinner     2
192       28.44  2.56  Male    Yes  Thur   Lunch     2
9         14.78  3.23  Male     No   Sun  Dinner     2
it has a type of: <class 'pandas.core.frame.DataFrame'>

what we have:
('Male',      total_bill   tip   sex smoker   day    time  size
24        19.82  3.18  Male     No   Sat  Dinner     2
6          8.77  2.00  Male     No   Sun  Dinner     2
153       24.55  2.00  Male     No   Sun  Dinner     4
211       25.89  5.16  Male    Yes   Sat  Dinner     4
176       17.89  2.00  Male    Yes   Sun  Dinner     2
192       28.44  2.56  Male    Yes  Thur   Lunch     2
9         14.78  3.23  Male     No   Sun  Dinner     2)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 196,099评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,473评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 143,229评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,570评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,427评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,335评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,737评论 3 386
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,392评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,693评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,730评论 2 312
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,512评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,349评论 3 314
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,750评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,017评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,290评论 1 251
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,706评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,904评论 2 335

推荐阅读更多精彩内容