seurat对象结构

Seurat

slot

slot function
assays A list of assays within this object
meta.data Cell-level meta data
active.assay Name of active, or default, assay
active.ident Identity classes for the current object
graphs A list of nearest neighbor graphs
reductions A list of DimReduc objects
project.name User-defined project name (optional)
tools Empty list. Tool developers can store any internal data from their methods here
misc Empty slot. User can store additional information here
version Seurat version used when creating the objec

对象信息使用标准R函数可以快速轻松地获得有关Seurat对象的摘要信息。可以使用dimncolnrow函数找到对象的形状/尺寸。细胞和特征名称可以分别使用colnamesrownames函数或dimnames函数找到。通过使用names,可以找到Seurat对象中包含的AssayDimReducGraph对象的名称向量。

# The following examples use the PBMC 3k dataset
> pbmc
An object of class Seurat
 13714 features across 2638 samples within 1 assay
 2 dimensional reductions calculated: pca, tsne
# nrow and ncol provide the number of features and cells in the active assay, respectively
# dim provides both nrow and ncol at the same time
> dim(x = pbmc)
[1] 13714  2638
# In addtion to rownames and colnames, one can use dimnames
# which provides a two-length list with both rownames and colnames
> head(x = rownames(x = pbmc))
[1] "AL627309.1"    "AP006222.2"    "RP11-206L10.2" "RP11-206L10.9"
[5] "LINC00115"     "NOC2L"
> head(x = colnames(x = pbmc))
[1] "AAACATACAACCAC" "AAACATTGAGCTAC" "AAACATTGATCAGC" "AAACCGTGCTTCCG"
[5] "AAACCGTGTATGCG" "AAACGCACTGGTAC"
# A vector of names of associated objects can be had with the names function
# These can be passed to the double [[ extract operator to pull them from the Seurat object
> names(x = pbmc)
[1] "RNA"  "pca"  "tsne"

可以使用 "[[" 来提取特定的AssayDimReducGraph对象。还可以使用 "[[" 将新对象添加到Seurat对象中;Seurat将找出新的关联对象在Seurat对象中的位置。

> pbmc[['RNA']]
Assay data with 13714 features for 2638 cells
Top 10 variable features:
 PPBP, DOK3, NFE2L2, ARVCF, YPEL2, UBE2D4, FAM210B, CTB-113I20.2, GBGT1,
 GMPPA
> pbmc[['tsne']]
A dimensional reduction object with key tSNE_
 Number of dimensions: 2
 Projected dimensional reduction calculated: FALSE
 Jackstraw run: FALSE

使用GetAssayData函数可以从Seurat对象访问数据。可以使用SetAssayData将数据添加到countsdatascale.data插槽中。新数据必须具有与当前数据相同顺序的相同细胞。添加到counts'或data`中的数据必须具有与当前数据相同的features。

> GetAssayData(object = pbmc, slot = 'scale.data')[1:3, 1:3]
              AAACATACAACCAC AAACATTGAGCTAC AAACATTGATCAGC
AL627309.1       -0.06547546    -0.10052277    -0.05804007
AP006222.2       -0.02690776    -0.02820169    -0.04508318
RP11-206L10.2    -0.03596234    -0.17689415    -0.09997719
# SetAssayData example...

可以使用单个[或使用$来访问细胞水平注释数据。尽管已经为它启用了制表符自动完成功能,使其成为交互式使用的理想选择,但是使用$来访问意味着一次只能提取一点数据。也可以使用单个[或使用AddMetaData添加细胞水平注释数据。

# Cell-level meta data is stored as a data frame
# Standard data frame functions work on the meta data data frame
> colnames(x = pbmc[])
[1] "nGene"        "nUMI"         "orig.ident"   "percent.mito" "res.0.6"
# One can pull multiple values from the data frame at any time
> head(x = pbmc[c('nUMI', 'percent.mito')])
               nUMI percent.mito
AAACATACAACCAC 2421  0.030177759
AAACATTGAGCTAC 4903  0.037935958
AAACATTGATCAGC 3149  0.008897363
AAACCGTGCTTCCG 2639  0.017430845
AAACCGTGTATGCG  981  0.012244898
AAACGCACTGGTAC 2164  0.016643551
# The $ sigil can only pull bit of meta data at a time; however, tab-autocompletion
# has been enabled for the $ sigil, making it ideal for interactive use
> head(x = pbmc$percent.mito)
               percent.mito
AAACATACAACCAC  0.030177759
AAACATTGAGCTAC  0.037935958
AAACATTGATCAGC  0.008897363
AAACCGTGCTTCCG  0.017430845
AAACCGTGTATGCG  0.012244898
AAACGCACTGGTAC  0.016643551
# Passing `drop = TRUE` will turn the meta data into a names vector
# with each entry being named for the cell it corresponds to
> head(x = pbmc['res.0.6', drop = TRUE])
AAACATACAACCAC AAACATTGAGCTAC AAACATTGATCAGC AAACCGTGCTTCCG AAACCGTGTATGCG
           "0"            "2"            "0"            "1"            "5"
AAACGCACTGGTAC
           "0"
# Add meta data example

HVFInfo函数从Assay对象中提取特征均值和离散度。可变特征向量可以通过VariableFeatures函数提取。VariableFeatures也可以设置可变特征向量。

# HVFInfo pulls mean, dispersion, and dispersion scaled
# Useful for viewing the results of FindVariableFeatures
> head(x = HVFInfo(object = pbmc))
                     mean dispersion dispersion.scaled
AL627309.1    0.013555659   1.432845        -0.6236875
AP006222.2    0.004695980   1.458631        -0.5728009
RP11-206L10.2 0.005672517   1.325459        -0.8356099
RP11-206L10.9 0.002644177   0.859264        -1.7556304
LINC00115     0.027437275   1.457477        -0.5750770
NOC2L         0.376037723   1.876440        -0.4162432
# VariableFeatures both accesses and sets the vector of variable features
> head(x = VariableFeatures(object = pbmc))
[1] "PPBP"   "DOK3"   "NFE2L2" "ARVCF"  "YPEL2"  "UBE2D4"
# Set variable features example

可以通过Stdev找到Seurat对象中存储的DimReduc的标准差向量。

> Stdev(object = pbmc, reduction.use = 'pca')
 [1] 5.666584 4.326466 3.952192 3.638124 2.191529 1.996551 1.877891 1.798251
 [9] 1.766873 1.753684 1.731568 1.720525 1.718079 1.715879 1.707009 1.702660
[17] 1.697318 1.692549 1.686149 1.683967

Methods

可以通过以下方法找到Seurat类:

library(Seurat)
utils::methods(class = 'Seurat')
  • [
  • [<-
  • [[
  • [[<-
  • colMeans
  • colSums
  • Command
  • DefaultAssay
  • DefaultAssay<-
  • dimnames
  • dim
  • GetAssayData
  • GetAssay
  • HVFInfo
  • Idents
  • Idents<-
  • merge
  • names
  • SetAssayData
  • Stdev
  • subset
  • SubsetData
  • VariableFeatures
  • VariableFeatures<-
  • WhichCells
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 229,327评论 6 537
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 98,996评论 3 423
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 177,316评论 0 382
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,406评论 1 316
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,128评论 6 410
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,524评论 1 324
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,576评论 3 444
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,759评论 0 289
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,310评论 1 335
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,065评论 3 356
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,249评论 1 371
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,821评论 5 362
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,479评论 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 34,909评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,140评论 1 290
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 51,984评论 3 395
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,228评论 2 375

推荐阅读更多精彩内容