机器学习day16自组织映射神经网络

高斯混合模型计算

  1. 初始随机设置各参数的值,然后重复迭代下面的步骤,直至收敛
  2. 根据当前的参数,计算每个点由某各分模型生成的概率
  3. 使用步骤2计算出来的概率,来改进每个模型的均值,方差和权重

我们一开始不用知道K个正态分布的参数,也不知道点是由哪个分布生成,在迭代过程中。

先固定当前的正态分布不变,获取每个点由每个数据点生成的概率。然后固定改生成概率不变,根据数据点和生成概率,获取更佳的正态分布,如此循环反复,直至参数收敛。得到合理的一组正态分布。

自组织映射神经网络

自组织映射神经网络(Self-Organizing Map,SOM)是无监督学习方法中一类重要方法,可以用作聚类,高维可视化,数据压缩,特征提取等等。亦称Kohonen网络。

自组织映射神经网络本质是两层神经网络,包含输入层和输出层。输入层模接受外界信息输入,输出层神经元个数通常是聚类的个数,代表每一个需要聚成的类。训练时采用“竞争学习”,每个输入的样例在输出层中找到一个和它最匹配的节点,称为激活节点,wonning neuron。

之后采用随机梯度下降法更新激活节点的参数,同时和激活节点临近的点也根据饶命激活节点的远近而适当更新参数。

这样的竞争可以通过神经元之间的横向抑制连接来实现。自组织映射神经网络的输出节点是有拓扑关系的,这个拓扑关系依据需求确定。

假设输入空间是D维,输入模式为x=\{x_i,i=1,...,D\},输入单元i和神经元j之间在计算层的连接权重为w=\{w_{i,j},j=1,..,N,i=1,...,D\},其中N是神经元的总数。自组织映射神经网络的自组织学习过程可以归纳为以下几个子过程。

  1. 初始化,所有连接权重都用小的随机值进行初始化。
  2. 竞争,神经元计算每个输入模式各自的判别函数值,并宣布具有最小判别函数值的特定神经元为胜利者,其中每个神经元j的判别函数为d_j(x)=\sum_{i=1}^D(x_i-w_{i,j})^2
  3. 合作,获胜神经元I(x)决定了兴奋神经网络拓扑邻域的空间位置,确定激活节点I(x)之后,我们也希望更新和它临近的节点。更新程度计算如下:
    T_{j,I(x)}(t)=exp(-\frac{S^2_{j,I(x)}}{2\sigma(t)^2})
    其中S_{i,j}表示竞争层神经元i和j之间的距离,\sigma(t)=\sigma_oexp(-\frac{t}{\tau_\sigma})随时间衰减。就是,临近的节点距离越远,更新的程度越小。
  4. 适应,适当调整相关兴奋神经元的连接权重,使得获胜的神经元对相似输入模式的后续应用的响应加强:
    \Delta w_{ji}=\eta(t).T_{j,I(x)}(t).(x_i,w_{ji})
    其中依赖于时间的学习率定义:
    \eta(t)=\eta_oexp(-\frac{t}{\tau_\eta})
  5. 迭代,继续回到步骤2,直到特征映射区域稳定。

迭代结束之后,每个样本所激活的神经元就是它所对应的类别。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349