Graphpad:绘制多指标ROC曲线

导读

1. ROC曲线:
ROC曲线(receiver operating characteristic curve,简称ROC曲线),以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线。ROC最初是在二战中被提出的信号检测理论,后来又被引入了心理学进行信号的知觉检测,现在ROC曲线已经成为非常重要和常见的统计分析方法。

2. ROC分析:
ROC分析首先是根据学习器的预测结果对样例进行排序,按此顺序逐个把样本作为正例进行预测,每次计算出两个重要量的值(TPR、FPR),分别以它们为横、纵坐标作图。AUC的值是ROC曲线下面积的大小,用来评价分类器的performance。通常,AUC的值介于0.5到1.0之间,较大的AUC代表了较好的performance。

如何制作如下图的多指标ROC曲线?

ROC.png

一、软件准备

  1. R:利用rnorm函数产生随机数,作为graphpad绘图的输入文件。
  2. Graphpad prism5:绘制ROC曲线。

二、过程

1. 利用R模拟输入文件

  • 产生两组正态分布随机数,控制mean和SD。
    GroupA <- as.data.frame(rnorm (30, mean=10, sd=5))
    GroupB <- as.data.frame(rnorm (30, mean=15, sd=5))

  • 保存。将两组数据均分给Genus和Phylum。
    write.xlsx(data1, file="C:/mywd/data1.xlsx")
    write.xlsx(data2, file="C:/mywd/data2.xlsx")

  • 整理后如下:


    R模拟数据.png

2. 打开graph prism5,Creat一个column图。

2.png

3. 重命名Data Table,向graphpad表格中粘入Genus数据,点击analysis,选择ROC curve,OK确定。

3.png

4. 勾选Line of identity,OK确定。graphpad进行ROC分析和绘图。

4.png

5. 点击Area查看AUC值、P值等统计结果。点击ROC of Genus查看ROC曲线。

5.png

6. 依次点击File, New, New Data Table and Graph新建一个数据表。

6.png

7. 按照相同的方法得到第二个指标的ROC图,ROC of Phylum。

7.png

8. 合并两个ROC曲线。双击ROC图进入Format Graph,依次点击Data Sets on Graph,ROC of Phylum B Identify %,Add。在新弹出的Add Data Sets to Graph中找到并选中ROC of Genus ROC Curve,点击OK。在新弹出的Format Graph再次点击OK。

8.png

9. 成功合并两条曲线。

9.png

10. 双击曲线或坐标轴,在Format Graph中设置曲线或坐标轴的参数。方法如下:

10.png

  • 这样我们就得到了两个指标的ROC曲线:


    结果.png

参考

  1. https://www.plob.org/article/12476.html
  2. https://jingyan.baidu.com/article/455a99506f1669a166277816.html

同步发布于微信公众号:微生态

\color{green}{😀😀原创文章,码字不易,转载请注明出处😀😀}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容