Python数据离散化指南:手写if-elif语句与pandas中cut()方法的实现

当我们进行数据分析时,有时候需要对数值型数据进行离散化,将其划分为不同的标签或类别。这样做可以方便我们进行统计和分析,并帮助我们更好地理解数据。

在本文中,我们将介绍两种常见的离散化方法,并提供实现代码。

方法一:使用条件语句

第一种方法是使用条件语句来显式地检查输入值 x 是否在每个区间内,并返回相应的标签。这种方法适用于自定义的分段方式,要求手动设置每个阈值和对应的标签。

下面是一个示例函数 transfor_num 的实现代码:

def transfor_num(x):
    if x ==0:
        label = '无交易'
    elif 0 < x <=0.01:
        label = '0-0.01'
    elif 0.01 < x <=0.04:
        label = '0.01-0.04'
    elif 0.04 < x <=0.09:
        label = '0.04-0.09'
    elif 0.09 < x <=0.49:
        label = '0.09-0.49'  
    elif 0.49 < x <=0.99:
        label = '0.49-0.99'
    elif 0.99 < x <=4.99:
        label = '0.99-4.99'    
    elif 4.99 < x <=9.99:
        label = '4.99-9.99'
    elif 9.99 < x <=19.99:
        label = '9.99-19.99'
    elif 19.99 < x <=49.99:
        label = '19.99-49.99'
    elif 49.99 < x <=99.99:
        label = '49.99-99.99'
    elif x > 99.99 :
        label = '100及以上'
    return label
    
# 你可以通过调用 transfor_num(x) 函数并将所需的值传递给 x 参数来使用该函数。例如:
label = transfor_num(5.67)
print(label)

输出结果应该是 '0.01-0.04',因为 5.67 在指定的区间范围内。

方法二:使用 pd.cut() 方法
第二种方法是使用 pandas 库的 cut() 方法将输入值 x 映射到不同的标签中,并返回标签。这种方法更加简洁和易于使用,同时也可以通过调整 bins 参数来灵活地控制分段的方式和结果。

下面是一个示例函数 transfor_num1 的实现代码:

def transfor_num1(x):
    bins = [-1,0, 0.01, 0.04, 0.09, 0.49, 0.99, 4.99, 9.99, 19.99, 49.99, 99.99, float('inf')]
    labels = [ '无交易','0-0.01', '0.01-0.04', '0.04-0.09', '0.09-0.49', '0.49-0.99', '0.99-4.99', '4.99-9.99', '9.99-19.99', '19.99-49.99', '49.99-99.99', '100及以上']
    return pd.cut(x, bins=bins, labels=labels)

你可以通过调用 transfor_num1(x) 函数并将所需的值传递给 x 参数来使用该函数。例如:

import pandas as pd

data = {'transaction': [0, 0.005, 0.0125, 0.044, 0.067, 0.55, 2.99, 8.75, 15.6, 30.25, 80.5, 150]}
df = pd.DataFrame(data)

df['tran_amount_label'] = transfor_num1(df['transaction'])

print(df)

# 输出结果将会是如下数据框的形式:
    transaction  tran_amount_label
0       0.00000              无交易
1       0.00500            0-0.01
2       0.01250        0.01-0.04
3       0.04400        0.01-0.04
4       0.06700        0.04-0.09
5       0.55000        0.49-0.99
6       2.99000        0.99-4.99
7       8.75000        4.99-9.99
8      15.60000      9.99-19.99
9      30.25000     19.99-49.99
10     80.50000    49.99-99.99
11    150.00000           100及以上

其中 tran_amount_label 是新添加的一列,它显示了每个交易额所属的标签和类别。

两种方法各有优缺点。使用条件语句需要手动设置阈值和对应的标签,比较繁琐;而使用 pd.cut() 方法则可以自动划分区间,但其不太灵活。因此,在具体使用时,需要根据实际情况进行选择。

希望本文能够帮助你更好地理解离散化的概念和实现方法。

本文由mdnice多平台发布

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,366评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,521评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,689评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,925评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,942评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,727评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,447评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,349评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,820评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,990评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,127评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,812评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,471评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,017评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,142评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,388评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,066评论 2 355

推荐阅读更多精彩内容