WebRTC的技术架构

1. 背景简介

WebRTC(Web Real-Time Communication)是一个谷歌开源项目,它提供了一套标准API,使Web应用可以直接提供实时音视频通信功能,不再需要借助任何插件。原生通信过程采用P2P协议,数据直接在浏览器之间交互,理论上不需要服务器端的参与。

为浏览器、移动平台、物联网设备提供一套用于开发功能丰富、高质量的实时音视频应用的通用协议是WebRTC的使命。

WebRTC的发展历史如下:

  • 2010年5月,谷歌收购视频会议软件公司GIPS,该公司在RTC编码方面有深厚的技术积累。
  • 2011年5月,谷歌开源WebRTC项目。
  • 2011年10月,W3C发布第一个WebRTC规范草案。
  • 2014年7月,谷歌发布视频会议产品Hangouts,该产品使用了WebRTC技术。
  • 2017年11月,WebRTC进入候选推荐标准(Candidate Recommendation,CR)阶段。
image.png

 

2. 技术架构

WebRTC技术架构的顶层分为两个部分。
一部分是Web API,一组JavaScript接口,由W3C维护,开发人员可以使用这些API在浏览器中创建实时通信应用程序。
另一部分是适用于移动端及桌面开发的libwebrtc,即使用WebRTC C++源码在Windows、Android、iOS等平台编译后的开发包,开发人员可以使用这个开发包打造原生的WebRTC应用程序。

WebRTC规范里没有包含信令协议,这部分需要研发人员依据业务特点自行实现。

在媒体传输层,WebRTC在UDP之上增加了3个协议:

  • 数据包传输层安全性协议(DTLS)用于加密媒体数据和应用程序数据。
  • 安全实时传输协议(SRTP)用于传输音频和视频流。
  • 流控制传输协议(SCTP)用于传输应用程序数据。

WebRTC的网络拓扑

媒体服务器是WebRTC在服务器端的实现,起到了桥梁的作用,用于连接多个WebRTC客户端,并增加了额外的媒体处理功能。通常根据提供的功能,将媒体服务器区分成MCU和SFU。

  • Mesh网络结构

Mesh是WebRTC多方会话最简单的网络结构。在这种结构中,每个参与者都向其他所有参与者发送媒体流,同时接收其他所有参与者发送的媒体流。说这是最简单的网络结构,是因为它是Web-RTC原生支持的,无须媒体服务器的参与。Mesh网络结构如下图所示:

image.png

缺点:
在Mesh网络结构中,每个参与者都以P2P的方式相互连接,数据交换基本不经过中央服务器(部分无法使用P2P的场景,会经过TURN服务器)。由于每个参与者都要为其他参与者提供独立的媒体流,因此需要N-1个上行链路和N-1个下行链路。众多上行和下行链路限制了参与人数,参与人过多会导致明显卡顿,通常只能支持6人以下的实时互动场景。

由于没有媒体服务器的参与,Mesh网络结构难以对视频做额外的处理,不支持视频录制、视频转码、视频合流等操作。


  • MCU网络结构

MCU(Multipoint Control Unit)是一种传统的中心化网络结构,参与者仅与中心的MCU媒体服务器连接。MCU媒体服务器合并所有参与者的视频流,生成一个包含所有参与者画面的视频流,参与者只需要拉取合流画面。

image.png

优点:
这种场景下,每个参与者只需要1个上行链路和1个下行链路。与Mesh网络结构相比,参与者所在的终端压力要小很多,可以支持更多人同时在线进行音视频通信,比较适合多人实时互动场景。

缺点:
但是MCU服务器负责所有视频编码、转码、解码、合流等复杂操作,服务器端压力较大,需要较高的配置。同时由于合流画面固定,界面布局也不够灵活。


  • SFU网络结构

在SFU(Selective Forwarding Unit)网络结构中,仍然有中心节点媒体服务器,但是中心节点只负责转发,不做合流、转码等资源开销较大的媒体处理工作,所以服务器的压力会小很多,服务器配置也不像MCU的要求那么高。
每个参与者需要1个上行链路和N-1个下行链路,带宽消耗低于Mesh,但是高于MCU。

我们可以将SFU服务器视为一个WebRTC参与方,它与其他所有参与方进行1对1的建立连接,并在其中起到桥梁的作用,同时转发各个参与者的媒体数据。SFU服务器具备复制媒体数据的能力,能够将一个参与者的数据转发给多个参与者。

SFU对参与实时互动的人数也有一定的限制,适用于在线教学、大型会议等场景,其网络结构见下图:

image.png


  • Simulcast联播

Simulcast技术对SFU进行了优化,发送端可以同时发送多个不同质量的媒体流给接收端。SFU能够依据参与者的网络质量,决定转发给参与者哪种质量的媒体流。

缺点:
因为发送者需要发送多个不同质量的媒体流,所以会显著增加发送设备的载荷,同时占用发送者上行带宽资源。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,013评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,205评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,370评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,168评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,153评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,954评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,271评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,916评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,382评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,877评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,989评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,624评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,209评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,199评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,418评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,401评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,700评论 2 345

推荐阅读更多精彩内容