Python数字图像处理(6):图像的批量处理

有些时候,我们不仅要对一张图片进行处理,可能还会对一批图片处理。这时候,我们可以通过循环来执行处理,也可以调用程序自带的图片集合来处理。
图片集合函数为:
skimage.io.ImageCollection(load_pattern, load_func=None)
这个函数是放在io模块内的,带两个参数,第一个参数load_pattern, 表示图片组的路径,可以是一个str字符串。第二个参数load_func是一个回调函数,我们对图片进行批量处理就可以通过这个回调函数实现。回调函数默认为imread(),即默认这个函数是批量读取图片。
比如我们可以利用它将一组图片读入:

    from skimage import io, data_dir
    data_path_str = data_dir + '/*.png'
    images = io.ImageCollection(data_path_str)
    print(len(images))

显示结果为24, 说明系统自带了24张png的示例图片,这些图片都读取了出来,放在图片集合images里。如果我们想显示其中一张图片,则可以在后加上两行代码:

    io.imshow(images[1])
    io.show()

显示结果:



如果一个文件夹里,我们既存放了一些jpg格式的图片,又存放了一些png格式的图片,现在想把它们全部读取出来,该怎么做呢?

    import skimage.io as io
    from skimage import data_dir
    str='d:/pic/*.jpg:d:/pic/*.png'
    coll = io.ImageCollection(str)
    print(len(coll))

注意这个地方'd:/pic/.jpg:d:/pic/.png' ,是两个字符串合在一起的,第一个是'd:/pic/.jpg', 第二个是'd:/pic/.png' ,合在一起后,中间用冒号来隔开,这样就可以把d:/pic/文件夹下的jpg和png格式的图片都读取出来。如果还想读取存放在其它地方的图片,也可以一并加进去,只是中间同样用冒号来隔开。
io.ImageCollection()这个函数省略第二个参数,就是批量读取。如果我们不是想批量读取,而是其它批量操作,如批量转换为灰度图,那又该怎么做呢?
那就需要先定义一个函数,然后将这个函数作为第二个参数,如:

    from skimage import io, data_dir, color

    def convert_to_gray(f, **args):
        image = io.imread(f)
        image = color.rgb2gray(image)
        return image

    data_path = data_dir + '/*.png'
    collections = io.ImageCollection(data_path, load_func=convert_to_gray)
    io.imshow(collections[1])
    io.show()
gray image

这种批量操作对视频处理是极其有用的,因为视频就是一系列的图片组合

    from skimage import data_dir,io,color

    class AVILoader:
        video_file = 'myvideo.avi'

        def __call__(self, frame):
            return video_read(self.video_file, frame)
    
    avi_load = AVILoader()

    frames = range(0, 1000, 10) # 0, 10, 20, ...
    ic =io.ImageCollection(frames, load_func=avi_load)

这段代码的意思,就是将myvideo.avi这个视频中每隔10帧的图片读取出来,放在图片集合中。
得到图片集合以后,我们还可以将这些图片连接起来,构成一个维度更高的数组,连接图片的函数为:
skimage.io.concatenate_images(ic)
带一个参数,就是以上的图片集合,如:

    from skimage import data_dir,io,color

    coll = io.ImageCollection('d:/pic/*.jpg')
    mat=io.concatenate_images(coll)

使用concatenate_images(ic)函数的前提是读取的这些图片尺寸必须一致,否则会出错。我们看看图片连接前后的维度变化:

    from skimage import data_dir, io, color

    coll = io.ImageCollection('d:/pic/*.jpg')
    print(len(coll))      #连接的图片数量
    print(coll[0].shape)   #连接前的图片尺寸,所有的都一样
    mat=io.concatenate_images(coll)
    print(mat.shape)  #连接后的数组尺寸
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容