mlchapter 反向传播算法实现参数优化

前度传播+损失函数+ 学习效率+反向传播+session
import tensorflow as tf
from numpy.random import RandomState
batch_size = 8
w1= tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2= tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))
x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input")
y_= tf.placeholder(tf.float32, shape=(None, 1), name='y-input')
a = tf.matmul(x, w1)
y = tf.matmul(a, w2)
y = tf.sigmoid(y)
cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0))
                                + (1 - y_) * tf.log(tf.clip_by_value(1 - y, 1e-10, 1.0)))
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
rdm = RandomState(1)
X = rdm.rand(128,2)
Y = [[int(x1+x2 < 1)] for (x1, x2) in X]
with tf.Session() as sess:
    init_op = tf.global_variables_initializer()
    sess.run(init_op)
    
    # 输出目前(未经训练)的参数取值。
    print(sess.run(w1))
    print(sess.run(w2))
    print("\n")
    
    # 训练模型。
    STEPS = 12000
    for i in range(STEPS):
        start = (i*batch_size) % 128
        end = (i*batch_size) % 128 + batch_size
        sess.run([train_step, y, y_], feed_dict={x: X[start:end], y_: Y[start:end]})
        if i % 1000 == 0:
            total_cross_entropy = sess.run(cross_entropy, feed_dict={x: X, y_: Y})
            print("After %d training step(s), cross entropy on all data is %g" % (i, total_cross_entropy))
    
    # 输出训练后的参数取值。
    print("\n")
    print(sess.run(w1))
    print(sess.run(w2))











12000次训练结果:交叉熵集越来越小,得出w1,w2的优化参数
[[-0.8113182   1.4845988   0.06532937]
 [-2.4427042   0.0992484   0.5912243 ]]
[[-0.8113182 ]
 [ 1.4845988 ]
 [ 0.06532937]]


After 0 training step(s), cross entropy on all data is 1.89805
After 1000 training step(s), cross entropy on all data is 0.655075
After 2000 training step(s), cross entropy on all data is 0.626172
After 3000 training step(s), cross entropy on all data is 0.615096
After 4000 training step(s), cross entropy on all data is 0.610309
After 5000 training step(s), cross entropy on all data is 0.608679
After 6000 training step(s), cross entropy on all data is 0.608231
After 7000 training step(s), cross entropy on all data is 0.608114
After 8000 training step(s), cross entropy on all data is 0.608088
After 9000 training step(s), cross entropy on all data is 0.608081
After 10000 training step(s), cross entropy on all data is 0.608079
After 11000 training step(s), cross entropy on all data is 0.608079


[[ 0.08924854  0.51599807  1.7538922 ]
 [-2.2377944  -0.20479864  1.0734867 ]]
[[-0.49589315]
 [ 0.4026622 ]
 [-1.0064225 ]]
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容

  • 姓名:周雪宁 学号:1702110196 转载:http://mp.weixin.qq.com/s/8U3vFaf...
    周雪宁阅读 3,748评论 0 1
  • 引言 系统运行的表现通常会受到多种参数变量的影响。参数取值的两两组合,其可能的组合数是非常大的。如何比较好且快速地...
    胖艺阅读 2,617评论 0 2
  • 心情一压抑,想的不是狂喊,狂奔,狂逛,狂买,而是吃辣条,一整袋一整袋的吃,吃完一袋在一袋,还要配上冰激凌,一定是和...
    吉祥大人阅读 215评论 0 0
  • “滴答滴答”雨水落地的声音,刚出家门就听到雨水滴落的声音,打着雨伞走在大街风凉飕飕的很清爽,吹着风穿着长衣长裤都...
    Ange冷瞳ia阅读 141评论 0 2
  • 我这个人总是喜欢看到真真实实才能被打动,五天的学习get到我最大动力突破的是虢老师的演讲视频,那个看上去像幼儿园幼...
    Luuq阅读 245评论 0 0