Hive之外部分区表

本文介绍了如何在Hive里新建一个外部分区表并加载数据

1.建表

# 使用数据库
use blog;

# 创建外部分区表
create external table external_blog_record(
    host string comment "主机",
    app string comment "应用",
    source string comment "来源",
    remote_addr string comment "访问IP",
    time_iso6401 string comment "访问时间",
    http_host string comment "域名",
    request_method string comment "请求方式",
    request_url string comment "请求地址",
    request_protocol string comment "请求协议",
    request_time string comment "请求耗时",
    status string comment "请求状态",
    body_byte_sents string comment "内容体大小",
    upstream_addr string comment "转发服务器地址",
    upstream_response_time string comment "转发响应耗时",
    upstream_status string comment "转发状态",
    http_referer string comment "来源地址",
    http_user_agent string comment "浏览器类型",
    res_type string comment "资源类型:首页、文章、类别、其他"
) 
comment "日志原始记录外部分区表"
partitioned by (day string) 
row format delimited fields terminated by '\t' 
location '/log/blog';

新建一个名为external_blog_record的数据库表并制定分区参数day,数据的格式用'\t'分隔,数据的目录存放在HDFS的'/log/blog'目录下。

2.查看分区

# 查看表分区
show partitions external_blog_record;
分区列表

可以看到目前表里面已经存在很多分区了,查看HDFS的目录


hdfs中的分区

每个分区下对应存放这日志文件。


分区中的日志文件

3.新增分区

只需要在 /log/blog 下 新建day=XXX 即可,但是这样新建的分区并没有和Hive关联起来,必须运行如下命令,使分区与Hive关联起来。

msck repair table external_blog_record;

就可以用上面的查看分区的命令查看是否新建成功。

4.查询分区下的记录

hive> select count(*) from external_blog_record where day=20181122;
Query ID = hadoop_20181123144713_2b8b197a-c09b-4bf6-8ad3-b88cbd1ee4ca
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1542348923310_0146, Tracking URL = http://hadoop1:8088/proxy/application_1542348923310_0146/
Kill Command = /opt/soft/hadoop-2.7.3/bin/hadoop job  -kill job_1542348923310_0146
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-11-23 14:47:25,697 Stage-1 map = 0%,  reduce = 0%
2018-11-23 14:47:32,237 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.49 sec
2018-11-23 14:47:39,923 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 2.62 sec
MapReduce Total cumulative CPU time: 2 seconds 620 msec
Ended Job = job_1542348923310_0146
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 2.62 sec   HDFS Read: 414396 HDFS Write: 5 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 620 msec
OK
1561
Time taken: 27.642 seconds, Fetched: 1 row(s)

5.附录

利用MapperReduce来定时合并小文件并加载到Hive分区表里

/**
 * 合并日志文件并加载到Hive分区表
 */
public class MergeSmallFileAndLoadIntoHive {

    private static final Logger LOG = LoggerFactory.getLogger(MergeSmallFileAndLoadIntoHive.class);

    static class SmallFileCombinerMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
        NullWritable v = NullWritable.get();

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            context.write(value, v);
        }
    }

    public static void main(String[] args) throws Exception {

        boolean test = false;
        String logPath;
        String patition;

        if (test) {
            patition = "day=20181114";

            // Linux
            logPath = "/log/blog";

            // Windows
            logPath = "D:" + File.separator + "hadoop" + File.separator + "blog";
        } else {
            if (args == null || args.length < 2) {
                throw new RuntimeException("\"参数的长度不正确,参考:[java -jar xxxx.jar me.jinkun.mr.merge.MergeSmallFileAndLoadIntoHive /log/blog day=20181116]\"");
            }

            logPath = args[0];
            patition = args[1];
        }


        String tempInPath = logPath + File.separator + "temp" + File.separator + patition + File.separator + "in";
        String tempOutPath = logPath + File.separator + "temp" + File.separator + patition + File.separator + "out";

        //权限问题
        System.setProperty("HADOOP_USER_NAME", "hadoop");

        Configuration conf = new Configuration();
        if (!test) {
            conf.set("fs.defaultFS", "hdfs://hadoop1:9000");
        }

        // 1.获取当天临时保存的日志
        List<Path> paths = new ArrayList<>();
        long currentTimeMillis = System.currentTimeMillis();
        FileSystem fs = FileSystem.get(conf);
        FileStatus[] fileStatuses = fs.listStatus(new Path(tempInPath));
        for (FileStatus fileStatus : fileStatuses) {
            if (fileStatus.isDirectory()) {
                Path path = fileStatus.getPath();
                String name = fileStatus.getPath().getName();
                if (!name.startsWith("delete") &&
                        name.compareTo(String.valueOf(currentTimeMillis)) < 0) {
                    paths.add(path);
                }
                LOG.info("文件夹名为:" + name);
            }
        }

        if (paths.size() == 0) {
            LOG.info("暂无可以合并的文件夹!不提交JOB");
            System.exit(0);
        }

        Job job = Job.getInstance(conf);
        job.setJarByClass(MergeSmallFileAndLoadIntoHive.class);
        job.setMapperClass(SmallFileCombinerMapper.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 2.合并小文件到临时文件夹
        job.setInputFormatClass(CombineTextInputFormat.class);
        CombineTextInputFormat.setMaxInputSplitSize(job, 1024 * 1024 * 128);//128M
        CombineTextInputFormat.setInputPaths(job, paths.toArray(new Path[paths.size()]));
        Path tempResultPath = new Path(tempOutPath);
        FileOutputFormat.setOutputPath(job, tempResultPath);

        job.setNumReduceTasks(0);

        boolean flag = job.waitForCompletion(true);

        // 如果成功
        if (flag) {

            // 3.将合并后的文件移动到Hive的分区表
            int index = 0;
            FileStatus[] resultStatus = fs.listStatus(tempResultPath);
            for (FileStatus fileStatus : resultStatus) {
                Path path = fileStatus.getPath();
                if (path.getName().startsWith("part")) {
                    fs.rename(path, new Path(logPath + File.separator + patition + File.separator + currentTimeMillis + "." + index + ".log"));
                    index++;
                }
            }
            fs.delete(tempResultPath, true);

            // 4.标记合并过的文件夹为已经删除
            for (Path path : paths) {
                fs.rename(path, new Path(path.getParent(), "delete_" + path.getName()));
            }

            fs.close();
        }
    }
}

执行脚本

#!/bin/sh
day=`date '+%Y%m%d'`
echo "提交合并任务 $day"
nohup /opt/soft/hadoop-2.7.3/bin/hadoop jar /opt/soft-install/schedule/mapreduce-1.0.jar me.jinkun.mr.merge.MergeSmallFileAndLoadIntoHive /log/blog day=$day > nohup.log 2>&1 &
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,454评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,553评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,921评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,648评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,770评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,950评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,090评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,817评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,275评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,592评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,724评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,409评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,052评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,815评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,043评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,503评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,627评论 2 350

推荐阅读更多精彩内容